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C H A P T E R 5

Digital Signal ProcessingEquation Section 5

One of the most popular ways of characteriz-
ing speech is in terms of a signal or acoustic waveform. Shown in Figure 5.1 is a representa-
tion of the speech signal that ensures that the information content can be easily extracted by
human listeners or computers. This is why digital signal processing plays a fundamental role
for spoken language processing. We describe here the fundamentals of digital signal proc-
essing: digital signals and systems, frequency-domain transforms for both continuous and
discrete frequencies, digital filters, the relationship between analog and digital signals, fil-
terbanks, and stochastic processes. In this chapter we set the mathematical foundations of
frequency analysis that allow us to develop specific techniques for speech signals in Chapter
6.

The main theme of this chapter is the development of frequency-domain methods
computed through the Fourier transform. When we boost the bass knob in our amplifier we
are increasing the gain at low frequencies, and when we boost the treble knob we are in-
creasing the gain at high frequencies. Representation of speech signals in the frequency do-
main is especially useful because the frequency structure of a phoneme is generally unique.
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Figure 5.1 Signal processing is both a representation and a transformation that allows a useful
information extraction from a source. The representation and transformation are based on a
model of the signal, often parametric, that is convenient for subsequent processing.

5.1. DIGITAL SIGNALS AND SYSTEMS

To process speech signals, it is convenient to represent them mathematically as functions of
a continuous variable t, which represents time. Let us define an analog signal ( )ax t as a

function varying continuously in time. If we sample the signal x with a sampling period T
(i.e., t nT= ), we can define a discrete-time signal as [ ] ( )ax n x nT= , also known as digital

signal1. In this book we use parentheses to describe an analog signal and brackets for digital
signals. Furthermore we can define the sampling frequency sF as 1/sF T= , the inverse of

the sampling period T. For example, for a sampling rate 8kHzsF = , its corresponding sam-

pling period is 125 microseconds. In Section 5.5 it is shown that, under some circumstances,
the analog signal ( )ax t can be recovered exactly from the digital signal [ ]x n . Figure 5.2

shows an analog signal and its corresponding digital signal. In subsequent figures, for con-
venience, we will sometimes plot digital signals as continuous functions.

1 Actually the term digital signal is defined as a discrete-time signal whose values are represented by integers within
a range, whereas a general discrete-time signal would be represented by real numbers. Since the term digital signal
is much more commonly used, we will use that term, except when the distinction between them is necessary.
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Figure 5.2 Analog signal and its corresponding digital signal.

The term Digital Signal Processing (DSP) refers to methods for manipulating the se-
quence of numbers [ ]x n in a digital computer. The acronym DSP is also used to refer to a

Digital Signal Processor, i.e., a microprocessor specialized to perform DSP operations.
We start with sinusoidal signals and show they are the fundamental signals for linear

systems. We then introduce the concept of convolution and linear time-invariant systems.
Other digital signals and nonlinear systems are also introduced.

5.1.1. Sinusoidal Signals

One of the most important signals is the sine wave or sinusoid

0 0 0 0[ ] cos( )x n A nω φ= + (5.1)

where 0A is the sinusoid’s amplitude, 0ω the angular frequency and 0φ the phase. The an-

gle in the trigonometric functions is expressed in radians, so that the angular frequency 0ω
is related to the normalized linear frequency 0f by the relation 0 02 fω π= , and 00 1f≤ ≤ .

This signal is periodic2 with period 0 01/T f= . In Figure 5.3 we can see an example of a

sinusoid with frequency 0 0.04f = , or a period of 0 25T = samples.

Sinusoids are important because speech signals can be decomposed as sums of sinu-
soids. When we boost the bass knob in our amplifier we are increasing the gain for sinusoids
of low frequencies, and when we boost the treble knob we are increasing the gain for sinu-
soids of high frequencies.

2 A signal x[n] is periodic with period N if and only if x[n]=x[n+N], which requires 0 2 / Nω π= . This means that

the digital signal in Eq. (5.1) is not periodic for all values of 0ω , even though its continuous signal counterpart

0 0 0( ) cos( )x t A tω φ= + is periodic for all values of 0ω (see Section 5.5).
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Figure 5.3 A digital sinusoid with a period of 25 samples.

What is the sum of two sinusoids 0[ ]x n and 1[ ]x n of the same frequency 0ω but dif-

ferent amplitudes 0A and 1A , and phases 0φ and 1φ ? The answer is another sinusoid of the

same frequency but a different amplitude A and phase φ. While this can be computed
through trigonometric identities, it is somewhat tedious and not very intuitive. For this rea-
son we introduce another representation based on complex numbers, which proves to be
very useful when we study digital filters.

Figure 5.4 Complex number representation in Cartesian form z x jy= + and polar form
jz Ae φ= . Thus cosx A φ= and siny A φ= .

A complex number x can be expressed as z = x+jy, where 1j = − , x is the real part

and y is the imaginary part, with both x and y being real numbers. Using Euler’s relation,
given a real number φ, we have

cos sinje jφ φ φ= + (5.2)

so that the complex number z can also be expressed in polar form as jz Ae φ= , where A is
the amplitude and φ is the phase. Both representations can be seen in Figure 5.4, where the
real part is shown in the abscissa (x-axis) and the imaginary part in the ordinate (y-axis).

Using complex numbers, the sinusoid in Eq. (5.1) can be expressed as the real part of
the corresponding complex exponential

0 0( )
0 0 0 0 0[ ] cos( ) Re{ }j nx n A n A e ω φω φ += + = (5.3)

and thus the sum of two complex exponential signals equals

y
A

φ

x
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( )0 0 0 1 0 0 0 01( ) ( ) ( )
0 1 0 1

j n j n j n j j n j nj jA e A e e A e A e e Ae Aeω φ ω φ ω φ ω ω φφ φ+ + ++ = + = = (5.4)

Taking the real part in both sides results in

0 0 0 2 0 1 0cos( ) cos( ) cos( )A n A n A nω φ ω φ ω φ+ + + = + (5.5)

or in other words, the sum of two sinusoids of the same frequency is another sinusoid of the
same frequency.

To compute A and φ, dividing Eq. (5.4) by 0j ne ω leads to a relationship between the
amplitude A and phase φ :

0 1
0 1

j j jA e A e Aeφ φ φ+ = (5.6)

Equating real and imaginary parts in Eq. (5.6) and dividing them we obtain:

0 0 1 1

0 0 1 1

sin sin
tan

cos cos

A A

A A

φ φφ
φ φ

+
=

+
(5.7)

and adding the squared of real and imaginary parts and using trigonometric identities3

2 2 2
0 1 0 1 0 12 cos( )A A A A A φ φ= + + − (5.8)

Figure 5.5 Geometric representation of the sum of two sinusoids of the same frequency. It fol-
lows the complex number representation in Cartesian form of Figure 5.4.

This complex representation of Figure 5.5 lets us analyze and visualize the amplitudes
and phases of sinusoids of the same frequency as vectors. The sum of N sinusoids of the
same frequency is another sinusoid of the same frequency that can be obtained by adding the
real and imaginary parts of all complex vectors. In Section 5.1.3.3 we show that the output
of a linear time-invariant system to a sinusoid is another sinusoid of the same frequency.

3 2 2sin cos 1φ φ+ = and cos( ) cos cos sin sina b a b a b− = +

� 0

�1 � A0

A1

A
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5.1.2. Other Digital Signals

In the field of digital signal processing there are other signals that repeatedly arise and that
are shown in Table 5.1.

Table 5.1 Some useful digital signals: the Kronecker delta, unit step, rectangular signal, real
exponential ( 1a < ) and real part of a complex exponential ( 1r < ).

Kronecker delta,
or unit impulse

1 0
[ ]

0

n
n

otherwise
δ

=�
= �
�

Unit step 1 0
[ ]

0 0

n
u n

n

≥�
= � <�

Rectangular
signal

1 0
rect [ ]

0N

n N
n

otherwise

≤ <�
= �
�

Real exponential [ ] [ ]nx n a u n=

Complex
exponential

0

0 0

[ ] [ ] [ ]

(cos sin ) [ ]

jnn n

n

x n a u n r e u n

r n j n u n

ω

ω ω
= =

= +

If 1r = and 0 0ω ≠ we have a complex sinusoid as shown in Section 5.1.1. If 0 0ω =
we have a real exponential signal, and if 1r < and 0 0ω ≠ we have an exponentially decay-

ing oscillatory sequence, also known as a damped sinusoid.

5.1.3. Digital Systems

A digital system is a system that, given an input signal x[n], generates an output signal y[n]:

[ ] { [ ]}y n T x n= (5.9)

whose input/output relationship can be seen in Figure 5.6.

Figure 5.6 Block diagram of a digital system whose input is digital signal x[n], and whose
output is digital signal y[n].

In general, a digital system T is defined to be linear iff (if and only if)

1 1 2 2 1 1 2 2{ [ ] [ ]} { [ ]} { [ ]}T a x n a x n a T x n a T x n+ = + (5.10)

T{} y[n]x[n]

…

Re{x[n]}

n

n

n

n

n
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for any values of 1a , 2a and any signals 1[ ]x n and 2[ ]x n .

Here, we study systems according to whether or not they are linear and/or time invari-
ant.

5.1.3.1. Linear Time-Invariant Systems

A system is time-invariant if given Eq. (5.9), then

0 0[ ] { [ ]}y n n T x n n− = − (5.11)

Linear digital systems of a special type, the so-called linear time-invariant (LTI)4, are de-
scribed by

[ ] [ ] [ ] [ ] [ ]
k

y n x k h n k x n h n
∞

=−∞

= − = ∗� (5.12)

where ∗ is defined as the convolution operator. It is left to the reader to show that the linear
system in Eq. (5.12) indeed satisfies Eq. (5.11).

LTI systems are completely characterized by the signal [ ]h n , which is known as the

system’s impulse response because it is the output of the system when the input is an im-
pulse [ ] [ ]x n nδ= . Most of the systems described in this book are LTI systems.

Table 5.2 Properties of the convolution operator.

Commutative [ ] [ ] [ ] [ ]x n h n h n x n∗ = ∗
Associative ( ) ( )1 2 1 2 1 2[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]x n h n h n x n h n h n x n h n h n∗ ∗ = ∗ ∗ = ∗ ∗
Distributive ( )1 2 1 2[ ] [ ] [ ] [ ] [ ] [ ] [ ]x n h n h n x n h n x n h n∗ + = ∗ + ∗

The convolution operator is commutative, associative and distributive as shown in
Table 5.2 and Figure 5.7.

Figure 5.7 The block diagrams on the left, representing the commutative property, are equiva-
lent. The block diagrams on the right, representing the distributive property, are also equiva-
lent.

4 Actually the term linear time-invariant (LTI) systems is typically reserved for continuous or analog systems, and
linear shift-invariant system is used for discrete-time signals, but we will use LTI for discrete-time signals too since
it is widely used in this context.

h1[n] h2[n]

h2[n] h1[n]

h n h n1 2[ ] [ ]�

h1[n]

h2[n]

h1[n]+h2[n]
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5.1.3.2. Linear Time-Varying Systems

An interesting type of digital systems is that whose output is a linear combination of the
input signal at different times:

[ ] [ ] [ , ]
k

y n x k g n n k
∞

=−∞

= −� (5.13)

The digital system in Eq. (5.13) is linear, since it satisfies Eq. (5.10). The Linear
Time-Invariant systems of Section 5.1.3.1 are a special case of Eq. (5.13) when

[ , ] [ ]g n n k h n k− = − . The systems in Eq. (5.13) are called linear time-varying (LTV) sys-

tems, because the weighting coefficients can vary with time.
A useful example of such system is the so-called amplitude modulator

0[ ] [ ]cosy n x n nω= (5.14)

used in AM transmissions. As we show in Chapter 6, speech signals are the output of LTV
systems. Since these systems are difficult to analyze, we often approximate them with linear
time-invariant systems.

Table 5.3 Examples of nonlinear systems for speech processing. All of them are memoryless
except for the median smoother.

Nonlinear System Equation
Median Smoother
of order (2N+1)

[ ] median{ [ ], , [ ], , [ ]}y n x n N x n x n N= − +� �

Full-Wave Rectifier [ ] [ ]y n x n=
Half-Wave Rectifier [ ] [ ] 0

[ ]
0 [ ] 0

x n x n
y n

x n

≥�
= � <�

Frequency Modulator ( )0[ ] cos [ ]y n A x n nω ω= + ∆

Hard-Limiter
[ ]

[ ] [ ] [ ]

[ ]

A x n A

y n x n x n A

A x n A

≥�
�= <�
� − ≤ −�

Uniform Quantizer
(L-bit) with 2 2LN =
intervals of width ∆

( )
( )

( )
( )

1/ 2 [ ] ( 1)

1/ 2 [ ] ( 1) 0 1
[ ]

1/ 2 [ ] ( 1) 0 1

1/ 2 [ ] ( 1)

N x n N

m m x n m m N
y n

m m x n m m N

N x n N

� − ∆ ≥ − ∆
� + ∆ ∆ ≤ < + ∆ ≤ < −�= � − + ∆ − ∆ ≤ < − − ∆ < < −�
� − + ∆ < − − ∆�
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5.1.3.3. Nonlinear Systems

Many nonlinear systems do not satisfy Eq. (5.10). Table 5.3 includes a list of typical nonlin-
ear systems used in speech processing. All these nonlinear systems are memoryless, because
the output at time n depends only on the input at time n, except for the median smoother of
order (2N + 1) whose output depends also on the previous and the following N samples.

5.2. CONTINUOUS-FREQUENCY TRANSFORMS

A very useful transform for LTI systems is the Fourier transform, because it uses complex
exponentials as its basis functions, and its generalization: the z-transform. In this section we
cover both transforms, which are continuous functions of frequency, and their properties.

5.2.1. The Fourier Transform

It is instructive to see what the output of a LTI system with impulse response [ ]h n is when

the input is a complex exponential. Substituting 0[ ] j nx n e ω= in Eq. (5.12) and using the

commutative property of the convolution we obtain

0 0 0 0 0( )[ ] [ ] [ ] ( )j n k j n j k j n j

k k

y n h k e e h k e e H eω ω ω ω ω
∞ ∞

− −

=−∞ =−∞

= = =� � (5.15)

which is another complex exponential of the same frequency and amplitude multiplied by

the complex quantity 0( )jH e ω given by

( ) [ ]j j n

n

H e h n eω ω
∞

−

=−∞

= � (5.16)

Since the output of a LTI system to a complex exponential is another complex exponential,
it is said that complex exponentials are eigensignals of LTI systems, with the complex quan-

tity 0( )jH e ω being their eigenvalue.

The quantity ( )jH e ω is defined as the discrete-time Fourier transform of h[n]. It is

clear from Eq. (5.16) that ( )jH e ω is a periodic function of ω with period 2π , and there-

fore we need to keep only one period to fully describe it, typically π ω π− < < (Figure 5.8).
( )jH e ω is a complex function of ω which can be expressed in terms of the real and

imaginary parts:

( ) ( ) ( )j j j
r iH e H e jH eω ω ω= + (5.17)

or in terms of the magnitude and phase as
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arg[ ( )]( ) ( )
jj j j H eH e H e e
ωω ω= (5.18)

Thus if the input to the LTI system is a sinusoid as in Eq. (5.1), the output will be

( )0 0
0 0 0 0[ ] ( ) cos arg{ ( )}j jy n A H e n H eω ωω φ= + + (5.19)

according to Eq. (5.15). Therefore if 0( ) 1jH e ω > , the LTI system will amplify that fre-

quency, and likewise it will attenuate, or filter it, it if 0( ) 1jH e ω < . That is one reason why

these systems are also called filters. The Fourier transform ( )jH e ω of a filter h[n] is called

the system’s frequency response or transfer function.

Figure 5.8 ( )jH e ω is a periodic function of ω .

The angular frequency ω is related to the normalized linear frequency f by the sim-

ple relation 2 fω π= . We show in Section 5.5 that linear frequency lf and normalized fre-

quency f are related by l sf fF= , where sF is the sampling frequency.

The inverse discrete-time Fourier transform is defined as

1
[ ] ( )

2
j j nh n H e e d

π ω ω

π
ω

π −
= � (5.20)

The Fourier transform is invertible, and Eq. (5.16) and (5.20) are transform pairs:

( )

1 1
[ ] ( ) [ ]

2 2

1
[ ] [ ] [ ] [ ]

2

j j n j m j n

m

j n m

m m

h n H e e d h m e e d

h m e d h m n m h n

π πω ω ω ω

π π

π ω
π

ω ω
π π

ω δ
π

∞
−

− −
=−∞

∞ ∞
−

−
=−∞ =−∞

� �= = � �
� �

= = − =

�� �

� ��

(5.21)

since

( )1
[ ]

2
j n me d n m

π ω

π
ω δ

π
−

−
= −� (5.22)

A sufficient condition for the existence of the Fourier transform is

H e j( )�

�2π-2π π-π



Continuous-Frequency Transforms 211

[ ]
n

h n
∞

=−∞

< ∞� (5.23)

Although we have computed the Fourier transform of the impulse response of a filter
h[n], Eq. (5.16) and (5.20) can be applied to any signal x[n].

5.2.2. Z-Transform

The z-transform is a generalization of the Fourier transform. The z-transform of a digital
signal [ ]h n is defined as

( ) [ ] n

n

H z h n z
∞

−

=−∞

= � (5.24)

where z is a complex variable. Indeed, the Fourier transform of [ ]h n equals its z-transform

evaluated at jz e ω= . While the Fourier and z-transforms are often used interchangeably, we
normally use the Fourier transform to plot the filter’s frequency response, and the z-
transform to analyze more general filter characteristics, given its polynomial functional
form. We can also use the z-transform for unstable filters, which do not have Fourier trans-
forms.

Since Eq. (5.24) is an infinite sum, it is not guaranteed to exist. A sufficient condition
for convergence is:

[ ]
n

n

h n z
∞

−

=−∞

< ∞� (5.25)

which is true only for a region of convergence (ROC) in the complex z-plane 1 2R z R< <
as indicated in Figure 5.9.

Figure 5.9 Region of convergence of the z-transform in the complex plane.

For a signal [ ]h n to have a Fourier transform, its z-transform ( )H z has to include the

unit circle, | | 1z = , in its convergence region. Therefore, a sufficient condition for the exis-

tence of the Fourier transform is given in Eq. (5.23) by applying Eq. (5.25) to the unit circle.
An LTI system is defined to be causal if its impulse response is a causal signal, i.e.

[ ] 0h n = for 0n < . Similarly, a LTI system is anti-causal if [ ] 0h n = for 0n > . While all

R1

R2
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physical systems are causal, noncausal systems are still useful since causal systems could be
decomposed into causal and anti-causal systems.

A system is defined to be stable if for every bounded input it produces a bounded out-
put. A necessary and sufficient condition for an LTI system to be stable is

[ ]
n

h n
∞

=−∞

< ∞� (5.26)

which means, according to Eq. (5.23), that [ ]h n has a Fourier transform, and therefore that

its z-transform includes the unit circle in its region of convergence.
Just as in the case of Fourier transforms, we can use the z-transform for any signal, not

just for a filter’s impulse response.
The inverse z-transform is defined as

11
[ ] ( )

2
nh n H z z dz

jπ
−= �� (5.27)

where the integral is performed along a closed contour that is within the region of conver-
gence. Eqs. (5.24) and (5.27) plus knowledge of the region of convergence form a transform
pair: i.e. one can be exactly determined if the other is known. If the integral is performed
along the unit circle (i.e., doing the substitution jz e ω= ) we obtain Eq. (5.20), the inverse
Fourier transform.

5.2.3. Z-Transforms of Elementary Functions

In this section we compute the z-transforms of the signals defined in Table 5.1. The z-
transforms of such signals are summarized in Table 5.4. In particular we compute the z-
transforms of left-sided and right-sided complex exponentials, which are essential to com-
pute the inverse z-transform of rational polynomials. As we see in Chapter 6, speech signals
are often modeled as having z-transforms that are rational polynomials.

Table 5.4 Z-transforms of some useful signals together with their region of convergence.

Signal Z-Transform Region of Convergence

1[ ] [ ]h n n Nδ= −
1( ) NH z z−= 0z ≠

2[ ] [ ] [ ]h n u n u n N= − −
2 1

1
( )

1

Nz
H z

z

−

−

−=
−

0z ≠

3[ ] [ ]nh n a u n=
3 1

1
( )

1
H z

az−=
−

| | | |a z<

4[ ] [ 1]nh n a u n= − − −
4 1

1
( )

1
H z

az−=
−

| | | |z a<
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5.2.3.1. Right-Sided Complex Exponentials

A right-sided complex exponential sequence

3[ ] [ ]nh n a u n= (5.28)

has a z-transform given by

1

3 1 1
0

1 ( ) 1
( ) lim

1 1

N
n n

N
n

az
H z a z

az az

−∞
−

− −→∞=

−= = =
− −� for | | | |a z< (5.29)

by using the sum of the terms of a geometric sequence and making N → ∞ . This region of
convergence ( | | | |a z< ) is typical of causal signals (those that are zero for 0n < ).

When a z-transform is expressed as the ratio of two polynomials, the roots of the nu-
merator are called zeros, and the roots of the denominator are called poles. Zeros are the
values of z for which the z-transform equals 0, and poles are the values of z for which the z-
transform equals infinity.

3 ( )H z has a pole at z a= , because its value goes to infinity at z a= . According to

Eq. (5.26), 3[ ]h n is a stable signal if and only if | | 1a < , or in other words, if its pole is in-

side the unit circle. In general, a causal and stable system has all its poles inside the unit
circle. As a corollary, a system which has poles outside the unit circle is either noncausal or
unstable or both. This is a very important fact, which we exploit throughout the book.

5.2.3.2. Left-Sided Complex Exponentials

A left-sided complex exponential sequence

4[ ] [ 1]nh n a u n= − − − (5.30)

has a z-transform given by

1

4
1 0

1

1 1 1

( ) 1

1 1
1

1 1 1

n n n n n n

n n n

H z a z a z a z

a z

a z a z az

− ∞ ∞
− − −

=−∞ = =

−

− − −

= − = − = −

−= − = =
− − −

� � �
for | | | |z a< (5.31)

This region of convergence ( | | | |z a< ) is typical of noncausal signals (those that are nonzero

for 0n < ). Observe that 3 ( )H z and 4 ( )H z are functionally identical and only differ in the

region of convergence. In general, the region of convergence of a signal that is nonzero for
n−∞ < < ∞ is 1 2| |R z R< < .
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5.2.3.3. Inverse Z-Transform of Rational Functions

Integrals in the complex plane such as Eq. (5.27) are not easy to do, but fortunately they are
not necessary for the special case of ( )H z being a rational polynomial transform. In this

case, partial fraction expansion can be used to decompose the signal into a linear combina-
tion of signals like 1[ ]h n , 3[ ]h n and 4[ ]h n as in Table 5.4.

For example,

1

5 1 2

2 8
( )

2 5 3

z
H z

z z

−

− −

+=
− −

(5.32)

has as roots of its denominator 3, 1/ 2z = − . Therefore it can be decomposed as

1

5 1 1 1 2

(2 2 ) ( 6 )
( )

1 3 1 (1/ 2) 2 5 3

A B A B A B z
H z

z z z z

−

− − − −

+ + −= + =
− + − −

(5.33)

so that A and B are the solution of the following set of linear equations:

2 2 2

6 8

A B

A B

+ =
− =

(5.34)

whose solution is 2A = and 1B = − , and thus Eq. (5.33) is expressed as

5 1 1

1 1
( ) 2

1 3 1 (1/ 2)
H z

z z− −

� �� �= −� �� �− +� � � �
(5.35)

However, we cannot compute the inverse z-transform unless we know the region of
convergence. If, for example, we are told that the region of convergence includes the unit
circle (necessary for the system to be stable), then the inverse transform of

4 1

1
( )

1 3
H z

z−=
−

(5.36)

must have a region of convergence of | | 3z < according to Table 5.4, and thus be a left-sided

complex exponential:

4[ ] 3 [ 1]nh n u n= − − − (5.37)

and the transform of

3 1

1
( )

1 (1/ 2)
H z

z−=
+

(5.38)

must have a region of convergence of 1/ 2 | |z< according to Table 5.4, and thus be a right-

sided complex exponential:
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3[ ] ( 1/ 2) [ ]nh n u n= − (5.39)

so that

5[ ] 2 3 [ 1] ( 1/ 2) [ ]n nh n u n u n= − ⋅ − − − − (5.40)

While we only showed an example here, the method used generalizes to rational trans-
fer functions with more poles and zeros.

5.2.4. Properties of the Z and Fourier Transform

In this section we include a number of properties that are used throughout the book and that
can be derived from the definition of Fourier and z-transforms. Of special interest are the
convolution property and Parseval’s theorem, which are described below.

5.2.4.1. The Convolution Property

The z-transform of [ ]y n , convolution of [ ]x n and [ ]h n , can be expressed as a function of

their z-transforms:

( )

( ) [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] ( ) ( ) ( )

n n

n n k

n n k

k n k n

k

k

Y z y n z x k h n k z

x k h n k z x k h n z

x k z H z X z H z

∞ ∞ ∞
− −

=−∞ =−∞ =−∞

∞ ∞ ∞ ∞
− − +

=−∞ =−∞ =−∞ =−∞

∞
−

=−∞

� �= = −� �
� �

� � � �= − =� � � �
� � � �

= =

� � �

� � � �

�

(5.41)

which is the fundamental property of LTI systems: “The z-transform of the convolution of
two signals is the product of their z-transforms.” This is also known as the convolution
property. The ROC of ( )Y z is now the intersection of the ROCs of ( )X z and ( )H z and

cannot be empty for ( )Y z to exist.

Likewise, we can obtain a similar expression for the Fourier transforms:

( ) ( ) ( )j j jY e X e H eω ω ω= (5.42)

A dual version of the convolution property can be proven for the product of digital
signals:

1
[ ] [ ] ( ) ( )

2
j jx n y n X e Y eω ω

π
↔ ∗ (5.43)

whose transform is the continuous convolution of the transforms with a scale factor. The
convolution of functions of continuous variables is defined as
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( ) ( )* ( ) ( ) ( )y t x t h t x h t dτ τ τ
∞

−∞
= = −� (5.44)

Note how this differs from the discrete convolution of Eq. (5.12).

5.2.4.2. Power Spectrum and Parseval’s Theorem

Let’s define the autocorrelation of signal x[n] as

[ ] [ ] [ ] [ ] [ ( )] [ ] [ ]xx
m l

R n x m n x m x l x n l x n x n
∞ ∞

∗ ∗ ∗

=−∞ =−∞

= + = − − = ∗ −� � (5.45)

where the superscript asterisk (*) means complex conjugate5 and should not be confused
with the convolution operator.

Using the fundamental property of LTI systems in Eq. (5.42) and the symmetry prop-
erties in Table 5.5, we can express its Fourier transform ( )xxS ω as

2
( ) ( ) ( ) ( )xxS X X Xω ω ω ω∗= = (5.46)

which is the power spectrum. The Fourier transform of the autocorrelation is the power
spectrum:

[ ] ( )xx xxR n S ω↔ (5.47)

or alternatively

1
[ ] ( )

2
j n

xx xxR n S e d
π ω

π
ω ω

π −
= � (5.48)

If we set n = 0 in Eq. (5.48) and use Eq. (5.45) and (5.46), we obtain

2 21
[ ] ( )

2n

x n X d
π

π
ω ω

π

∞

−
=−∞

=� � (5.49)

which is called Parseval’s theorem and says that we can compute the signal’s energy in the
time domain or in the frequency domain.

In Table 5.5 we list, in addition to the convolution property and Parseval’s theorem, a
number of properties that can be derived from the definition of Fourier and z-transforms.

5.3. DISCRETE-FREQUENCY TRANSFORMS

Here we describe transforms, including the DFT, DCT and FFT, that take our discrete-time
signal into a discrete frequency representation. Discrete-frequency transforms are the natural

5 If jz x jy Ae φ= + = , its complex conjugate is defined as jz x jy Ae φ∗ −= − =
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transform for periodic signals, though we show in Section 5.7 and Chapter 6 how they are
also useful for aperiodic signals such as speech.

Table 5.5 Properties of the Fourier and z-transforms.

Property Signal Fourier Transform z-Transform
Linearity

1 2[ ] [ ]ax n bx n+
1 2( ) ( )j jaX e bX eω ω+ 1 2( ) ( )aX z bX z+

[ ]x n− ( )jX e ω− 1( )X z−

[ ]x n∗ ( )jX e ω∗ − ( )X z∗ ∗

[ ]x n∗ − ( )jX e ω∗ (1/ )X z∗ ∗

[ ]x n real

( )jX e ω is Hermitian

( ) ( )j jX e X eω ω− ∗=

( )jX e ω is even6

Re{ ( )}jX e ω is even

{ }arg ( )jX e ω is odd7

{ }Im ( )jX e ω is odd

( ) ( )X z X z∗ ∗=

Even{ [ ]}x n Re{ ( )}jX e ω

Symmetry

Odd{ [ ]}x n Im{ ( )}jj X e ω

Time-shifting
0[ ]x n n− 0( ) j njX e e ωω − 0( ) nX z z−

0[ ] j nx n e ω 0( )( )jX e ω ω− 0( )jX e zω−

Modulation
0[ ] nx n z 0( / )X z z

[ ] [ ]x n h n∗ ( ) ( )j jX e H eω ω ( ) ( )X z H z
Convolution [ ] [ ]x n y n 1

( ) ( )
2

j jX e Y eω ω

π
∗

Parseval’s
Theorem [ ] [ ] [ ]xx

m

R n x m n x m
∞

∗

=−∞

= +�
2

( ) ( )xxS Xω ω= ( ) (1/ )X z X z∗ ∗

A discrete transform of a signal [ ]x n is another signal defined as

[ ] { [ ]}X k x n= Τ (5.50)

Linear transforms are special transforms that decompose the input signal [ ]x n into a

linear combination of other signals:

6 A function f(x) is called even if and only if ( ) ( )f x f x= − .
7 A function f(x) is called odd if and only if ( ) ( )f x f x= − − .
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[ ] [ ] [ ]k
k

x n X k nϕ
∞

=−∞

= � (5.51)

where [ ]k nϕ is a set of orthonormal functions

[ ], [ ] [ ]k ln n k lϕ ϕ δ< >= − (5.52)

with the inner product defined as

[ ], [ ] [ ] [ ]k l k l
n

n n n nϕ ϕ ϕ ϕ
∞

∗

=−∞

< >= � (5.53)

With this definition, the coefficients [ ]X k are the projection of [ ]x n onto [ ]k nϕ :

[ ] [ ], [ ]kX k x n nϕ=< > (5.54)

as illustrated in Figure 5.10.

Figure 5.10 Orthonormal expansion of a signal x[n] in a two-dimensional space.

5.3.1. The Discrete Fourier Transform (DFT)

If a [ ]Nx n signal is periodic with period N then

[ ] [ ]N Nx n x n N= + (5.55)

and the signal is uniquely represented by N consecutive samples. Unfortunately, since Eq.
(5.23) is not met, we cannot guarantee the existence of its Fourier transform. The Discrete
Fourier Transform (DFT) of a periodic signal [ ]Nx n is defined as

1
2 /

0

[ ] [ ]
N

j nk N
N N

n

X k x n e π
−

−

=

=� 0 k N≤ < (5.56)

1
2 /

0

1
[ ] [ ]

N
j nk N

N N
k

x n X k e
N

π
−

=

= � 0 n N≤ < (5.57)

which are transform pairs. Equation (5.57) is also referred as a Fourier series expansion.

X0 0�

X1 1�

� 0

�1

x
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In Figure 5.11 we see the approximation of a periodic square signal with period
100N = as a sum of 19 harmonic sinusoids, i.e., we used only the first 19 [ ]NX k coeffi-

cients in Eq. (5.57).

18 18
2 /

18 1

[0]1 2
[ ] [ ] [ ]cos(2 / )j nk N N

N N N
k k

X
x n X k e X k nk N

N N N
π π

=− =

= = +� �� (5.58)

Had we used 100 harmonic sinusoids, the periodic signal would have been reproduced
exactly. Nonetheless, retaining a smaller number of sinusoids can provide a decent approxi-
mation for a periodic signal.

Figure 5.11 Decomposition of a periodic square signal with period 100 samples as a sum of 19
harmonic sinusoids with frequencies 2 /100k kω π= .

5.3.2. Fourier Transforms of Periodic Signals

Using the DFT, we now discuss how to compute the Fourier transforms of a complex expo-
nential, an impulse train, and a general periodic signal, since they are signals often used in
DSP. We also present a relationship between the continuous-frequency Fourier transform
and the discrete Fourier transform.

5.3.2.1. The Complex Exponential

One of the simplest periodic functions is the complex exponential 0[ ] j nx n e ω= . Since it has

infinite energy, we cannot compute its Fourier transform in its strict sense. Since such sig-
nals are so useful, we devise an alternate formulation.

First, let us define the function

1/ 0
( )

0
d

otherwise

ω
ω∆

∆ ≤ < ∆�
= �
�

(5.59)

which has the following property
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( ) 1d dω ω
∞

∆−∞
=� (5.60)

for all values of 0∆ > .
It is useful to define the continuous delta function ( )δ ω , also known as the Dirac

delta, as

0
( ) lim ( )dδ ω ω∆∆→

= (5.61)

which is a singular function and can be seen in Figure 5.12. The Dirac delta is a function of
a continuous variable and should not be confused with the Kronecker delta, which is a func-
tion of a discrete variable.

Figure 5.12 Representation of the ( )δ ω function and its approximation ( )d ω∆ .

Using Eqs. (5.59) and (5.61) we can then see that

0
( ) ( ) lim ( ) ( ) (0)X d X d d Xω δ ω ω ω ω ω

∞ ∞

∆−∞ −∞∆→
= =� � (5.62)

and similarly

0 0( ) ( ) ( )X d Xω δ ω ω ω ω
∞

−∞
− =� (5.63)

so that

0 0 0( ) ( ) ( ) ( )X Xω δ ω ω ω δ ω ω− = − (5.64)

because the integrals on both sides are identical.
Using Eq. (5.63), we see that the convolution of ( )X ω and 0( )δ ω ω− is

0 0 0( ) ( ) ( ) ( ) ( )X X u u du Xω δ ω ω δ ω ω ω ω
∞

−∞
∗ − = − − = −� (5.65)

For the case of a complex exponential, inserting ( ) j nX e ωω = into Eq. (5.63) results in

0
0( ) j nj ne d e ωωδ ω ω ω

∞

−∞
− =� (5.66)

By comparing Eq. (5.66) with (5.20) we can then obtain

∆

1/∆

ωω

δ(ω) d∆(ω)
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0
02 ( )j ne ω πδ ω ω↔ − (5.67)

so that the Fourier transform of a complex exponential is an impulse concentrated at fre-
quency 0ω .

5.3.2.2. The Impulse Train

Since the impulse train

[ ] [ ]N
k

p n n kNδ
∞

=−∞

= −� (5.68)

is periodic with period N, it can be expanded in Fourier series according to (5.56) as

[ ] 1NP k = (5.69)

so that using the inverse Fourier series Eq. (5.57), [ ]Np n can alternatively be expressed as

1
2 /

0

1
[ ]

N
j kn N

N
k

p n e
N

π
−

=

= � (5.70)

which is an alternate expression to Eq. (5.68) as a sum of complex exponentials. Taking the
Fourier transform of Eq. (5.70) and using Eq. (5.67) we obtain

1

0

2
( ) ( 2 / )

N
j

N
k

P e k N
N

ω π δ ω π
−

=

= −� (5.71)

which is another impulse train in the frequency domain (See Figure 5.13). The impulse train
in the time domain is given in terms of the Kronecker delta, and the impulse train in the fre-
quency domain is given in terms of the Dirac delta.

Figure 5.13 An impulse train signal and its Fourier transform, which is also an impulse train.

5.3.2.3. General Periodic Signals

We now compute the Fourier transform of a general periodic signal using the results of Sec-
tion 5.3.2.2 and show that, in addition to being periodic, the transform is also discrete. Given
a periodic signal [ ]Nx n with period N, we define another signal [ ]x n :

[ ] 0
[ ]

0
Nx n n N

x n
otherwise

≤ <�
= �
�

(5.72)
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so that

[ ] [ ] [ ] [ ] [ ] [ ]N N
k k

x n x n kN x n n kN x n p nδ
∞ ∞

=−∞ =−∞

= − = ∗ − = ∗� � (5.73)

which is the convolution of [ ]x n with an impulse train [ ]Np n as in Eq. (5.68). Since [ ]x n is

of finite length, it has a Fourier transform ( )jX e ω . Using the convolution property

( ) ( ) ( )j j j
N NX e X e P eω ω ω= , where ( )j

NP e ω is the Fourier transform of [ ]Np n as given by

Eq. (5.71), we obtain another impulse train:

2 /2
( ) ( ) ( 2 / )j j k N

N
k

X e X e k N
N

ω ππ δ ω π
∞

=−∞

= −� (5.74)

Therefore the Fourier transform ( )j
NX e ω of a periodic signal [ ]Nx n can be expressed

in terms of samples 2 /k k Nω π= , spaced 2 / Nπ apart, of the Fourier transform ( )jX e ω of

[ ]x n , one period of the signal [ ]Nx n . The relationships between [ ]x n , [ ]Nx n , ( )jX e ω and

( )j
NX e ω are shown in Figure 5.14.

Figure 5.14 Relationships between finite and periodic signals and their Fourier transforms. On
one hand, [ ]x n is a length N discrete signal whose transform ( )jX e ω is continuous and peri-

odic with period 2π . On the other hand, [ ]Nx n is a periodic signal with period N whose trans-

form ( )j
NX e ω is discrete and periodic.

5.3.3. The Fast Fourier Transform (FFT)

There is a family of fast algorithms to compute the DFT, which are called Fast Fourier
Transforms (FFT). Direct computation of the DFT from Eq. (5.56) requires 2N operations,
assuming that the trigonometric functions have been pre-computed. The FFT algorithm only
requires on the order of 2logN N operations, so it is widely used for speech processing.

…

……

………

[ ]x n

[ ]Nx n

( )jX e ω

( )j
NX e ω
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5.3.3.1. Radix-2 FFT

Let’s express the discrete Fourier transform of x[n]

1 1
2 /

0 0

[ ] [ ] [ ]
N N

j nk N nk
N

n n

X k x n e x n Wπ
− −

−

= =

= =� � 0 k N≤ < (5.75)

where we have defined for convenience

2 /j N
NW e π−= (5.76)

Equation (5.75) requires 2N complex multiplies and adds. Now, let’s suppose N is
even, and let [ ] [2 ]f n x n= represent the even-indexed samples of [ ]x n , and

[ ] [2 1]g n x n= + the odd-indexed samples. We can express Eq. (5.75) as

/ 2 1 / 2 1

/ 2 / 2
0 0

[ ] [ ] [ ] [ ] [ ]
N N

nk k nk k
N N N N

n n

X k f n W W g n W F k W G k
− −

= =

= + = +� � (5.77)

where F[k] and G[k] are the N/2 point DFTs of [ ]f n and [ ]g n , respectively. Since both

[ ]F k and [ ]G k are defined for 0 / 2k N≤ < , we need to also evaluate them for

/ 2N k N≤ < , which is straightforward, since

[ / 2] [ ]F k N F k+ = (5.78)

[ / 2] [ ]G k N G k+ = (5.79)

If N/2 is also even, then both [ ]f n and [ ]g n can be decomposed into sequences of

even and odd indexed samples and therefore its DFT can be computed using the same proc-
ess. Furthermore, if N is an integer power of 2, this process can be iterated and it can be
shown that the number of multiplies and adds is 2logN N , which is a significant saving

from 2N . This is the decimation-in-time algorithm and can be seen in Figure 5.15. A dual
algorithm called decimation-in-frequency can be derived by decomposing the signal into its
first N/2 and its last N/2 samples.

5.3.3.2. Other FFT Algorithms

Although the radix-2 FFT is the best known algorithm, there are other variants that are faster
and are more often used in practice. Among those are the radix-4, radix-8, split-radix and
prime-factor algorithm.

The same process used in the derivation of the radix-2 decimation-in-time algorithm
applies if we decompose the sequences into four sequences: 1[ ] [4 ]f n x n= ,

2[ ] [4 1]f n x n= + , 3[ ] [4 2]f n x n= + , and 4[ ] [4 3]f n x n= + . This is the radix-4 algorithm,
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which can be applied when N is a power of 4, and is generally faster than an equivalent
radix-2 algorithm.

Similarly there are radix-8 and radix-16 algorithms for N being powers of 8 and 16 re-
spectively, which use fewer multiplies and adds. But because of possible additional control
logic, it is not obvious that they will be faster, and every algorithm needs to be optimized for
a given processor.

There are values of N, such as 128N = , for which we cannot use radix-4, radix-8 nor
radix-16, so we have to use the less efficient radix-2. A combination of radix-2 and radix-4,
called split-radix [5], has been shown to have fewer multiplies than both radix-2 and radix-
4, and can be applied to N being a power of 2.

Finally, another possible decomposition is 1 2 LN p p p= � with ip being prime num-

bers. This leads to the prime-factor algorithm [2]. While this family of algorithms offers a
similar number of operations as the algorithms above, it offers more flexibility in the choice
of N.

Figure 5.15 Decimation in time radix-2 algorithm for an 8-point FFT.

5.3.3.3. FFT Subroutines

Typically, FFT subroutines are computed in-place to save memory and have the form
fft (float *xr, float *xi, int n)

where xr and xi are the real and imaginary parts respectively of the input sequence, before
calling the subroutine, and the real and imaginary parts of the output transform, after return-
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ing from it. C code that implements a decimation-in-time radix-2 FFT of Figure 5.15 is
shown in Figure 5.16.

void fft2 (float *x, float *y, int n, int m)
{

int n1, n2, i, j, k, l;
float xt, yt, c, s;
double e, a;

/* Loop through all m stages */
n2 = n;
for (k = 0; k < m; k++) {

n1 = n2;
n2 = n2 / 2;
e = PI2 / n1;
for (j = 0; j < n2; j++) {

/* Compute Twiddle factors */
a = j * e;
c = (float) cos (a);
s = (float) sin (a);

/* Do the butterflies */
for (i = j; i < n; i += n1) {

l = i + n2;
xt = x[i] - x[l];
x[i] = x[i] + x[l];
yt = y[i] - y[l];
y[i] = y[i] + y[l];
x[l] = c * xt + s * yt;
y[l] = c * yt - s * xt;

}
}

}

/* Bit reversal: descrambling */
j = 0;
for (i = 0; i < n - 1; i++) {

if (i < j) {
xt = x[j];
x[j] = x[i];
x[i] = xt;
xt = y[j];
y[j] = y[i];
y[i] = xt;

}
k = n / 2;
while (k <= j) {

j -= k;
k /= 2;

}
j += k;

}
}

Figure 5.16 C source for a decimation-in-time radix-2 FFT. Before calling the subroutine, x
and y contain the real and imaginary parts of the input signal respectively. After returning from
the subroutine, x and y contain the real and imaginary parts of the Fourier transform of the in-

put signal. n is the length of the FFT and is related to m by 2mn = .

The first part of the subroutine in Figure 5.16 is doing the so-called butterflies, which
use the trigonometric factors, also called twiddle factors. Normally, those twiddle factors are
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pre-computed and stored in a table. The second part of the subroutine deals with the fact that
the output samples are not linearly ordered (see Figure 5.15), in fact the indexing has the bits
reversed, which is why we need to do bit reversal, also called descrambling.

To compute the inverse FFT an additional routine is not necessary; it can be computed
with the subroutine above. To see that, we expand the DFT in Eq. (5.56) into its real and
imaginary parts:

( )
1

2 /

0

[ ] [ ] [ ] [ ]
N

j nk N
R I R I

n

X k jX k x n jx n e π
−

−

=

+ = +� (5.80)

take complex conjugate and multiply by j to obtain

( )
1

2 /

0

[ ] [ ] [ ] [ ]
N

j nk N
I R I R

n

X k jX k x n jx n e π
−

=

+ = +� (5.81)

which has the same functional form as the expanded inverse DFT of Eq. (5.57)

( )
1

2 /

0

1
[ ] [ ] [ ] [ ]

N
j nk N

R I R I
n

x k jx k X n jX n e
N

π
−

=

+ = +� (5.82)

so that the inverse FFT can be computed by calling fft (xi, xr, n) other than the
(1/N) factor.

Often the input signal [ ]x n is real, so that we know from the symmetry properties of

Table 5.5 that its Fourier transform is Hermitian. This symmetry can be used to compute the
length-N FFT more efficiently with a length (N/2) FFT. One way of doing so is to define

[ ] [2 ]f n x n= to represent the even-indexed samples of [ ]x n , and [ ] [2 1]g n x n= + the odd-

indexed samples. We can then define a length (N/2) complex signal [ ]h n as

[ ] [ ] [ ] [2 ] [2 1]h n f n jg n x n jx n= + = + + (5.83)

whose DFT is

[ ] [ ] [ ] [ ] [ ]R IH k F k jG k H k jH k= + = + (5.84)

Since [ ]f n and [ ]g n are real, their transforms are Hermitian and thus

[ ] [ ] [ ] [ ] [ ]H k F k jG k F k jG k∗ ∗ ∗− = − − − = − (5.85)

Using Eqs. (5.84) and (5.85), we can obtain [ ]F k and [ ]G k as a function of [ ]RH k and

[ ]IH k :

[ ] [ ] [ ] [ ][ ] [ ]
[ ]

2 2 2
R R I IH k H k H k H kH k H k

F k j
∗ + − − −+ − � � � �= = +� � � �

� � � �
(5.86)
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[ ] [ ] [ ] [ ][ ] [ ]
[ ]

2 2 2
I I R RH k H k H k H kH k H k

G k j
j

∗ + − − −− − � � � �= = −� � � �
� � � �

(5.87)

As shown in Eq. (5.77), [ ]X k can be obtained as a function of [ ]F k and [ ]G k

[ ] [ ] [ ] k
NX k F k G k W −= + (5.88)

so that the DFT of the real sequence [ ]x n is obtained through Eqs. (5.83), (5.86), (5.87) and

(5.88). The computational complexity is a length (N/2) complex FFT plus N real multiplies
and 3N real adds.

5.3.4. Circular Convolution

The convolution of two periodic signals is not defined according to Eq. (5.12). Given two
periodic signals 1[ ]x n and 2[ ]x n with period N, we define their circular convolution as

1

1 2 1 2 1 2
0

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
N

m m N

y n x n x n x m x n m x m x n m
−

= =< >

= ⊗ = − = −� � (5.89)

where m N=< > in Eq. (5.89) means that the sum lasts only one period. In fact, the sum
could be over any N consecutive samples, not just the first N. Moreover, [ ]y n is also peri-

odic with period N. Furthermore, it is left to the reader to show that

1 2[ ] [ ] [ ]Y k X k X k= (5.90)

i.e., the DFT of [ ]y n is the product of the DFTs of 1[ ]x n and 2[ ]x n .

An important application of the above result is the computation of a regular convolu-
tion using a circular convolution. Let 1[ ]x n and 2[ ]x n be two signals such that 1[ ] 0x n =
outside 10 n N≤ < , and 2[ ] 0x n = outside 20 n N≤ < . We know that their regular convolu-

tion 1 2[ ] [ ] [ ]y n x n x n= ∗ is zero outside 1 20 1N N≤ + − . If we choose an integer N such that

1 2 1N N N≥ + − , we can define two periodic signals 1[ ]x n� and 2[ ]x n� with period N such

that

1 1
1

1

[ ] 0
[ ]

0

x n n N
x n

N n N

≤ <�
= � ≤ <�

� (5.91)

2 2
2

2

[ ] 0
[ ]

0

x n n N
x n

N n N

≤ <�
= � ≤ <�

� (5.92)

where 1[ ]x n and 2[ ]x n have been zero padded. It can be shown that the circular convolution

1 2[ ] [ ] [ ]y n x n x n= ⊗� � � is identical to [ ]y n for 0 n N≤ < , which means that [ ]y n can be ob-
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tained as the inverse DFT of 1 2[ ] [ ] [ ]Y k X k X k=� � � . This method of computing the regular

convolution of two signals is more efficient than the direct calculation when N is large.
While the crossover point will depend on the particular implementations of the FFT and
convolution, as well as the processor, in practice this has been found beneficial for

1024N ≥ .

5.3.5. The Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) is a widely used for speech processing. It has several
definitions. The DCT-II [ ]C k of a real signal [ ]x n is defined by:

( )
1

0

[ ] [ ]cos ( 1/ 2) /
N

n

C k x n k n Nπ
−

=

= +� for 0 k N≤ < (5.93)

with its inverse given by

( )
1

1

1
[ ] [0] 2 [ ]cos ( 1/ 2) /

N

k

x n C C k k n N
N

π
−

=

� �= + +� �
� �

� for 0 n N≤ < (5.94)

The DCT-II can be derived from the DFT by assuming [ ]x n is a real periodic se-

quence with period 2N and with an even symmetry [ ] [2 1 ]x n x N n= − − . It is left to the

reader to show, that [ ]X k and [ ]C k are related by

/ 2[ ] 2 [ ]j k NX k e C kπ= for 0 k N≤ < (5.95)

/ 2[2 ] 2 [ ]j k NX N k e C kπ−− = for 0 k N≤ < (5.96)

It is left to the reader to prove Eq. (5.94) is indeed the inverse transform using Eqs.
(5.57), (5.95), and (5.96). Other versions of the DCT-II have been defined that differ on the
normalization constants but are otherwise the same.

There are eight different ways to extend an N-point sequence and make it both peri-
odic and even, such that can be uniquely recovered. The DCT-II is just one of the ways, with
three others being shown in Figure 5.17.

The DCT-II is the most often used discrete cosine transform because of its energy
compaction, which results in its coefficients being more concentrated at low indices than the
DFT. This property allows us to approximate the signal with fewer coefficients [10].

From Eq. (5.95) and (5.96) we see that the DCT-II of a real sequence can be computed
with a length-2N FFT of a real and even sequence, which in turn can be computed with a
length (N/2) complex FFT and some additional computations. Other fast algorithms have
been derived to compute the DCT directly [15], using the principles described in Section
5.3.3.1. Two-dimensional transforms can also be used for image processing.
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Figure 5.17 Four ways to extend a four-point sequence x[n] to make it both periodic and have
even symmetry. The figures in (a), (b), (c) and (d) correspond to the DCT-I, DCT-II, DCT-III
and DCT-IV respectively.

5.4. DIGITAL FILTERS AND WINDOWS

We describe here the fundamentals of digital filter design and study finite-impulse response
(FIR) and infinite-impulse response (IIR) filters, which are special types of linear time-
invariant digital filters. We establish the time-frequency duality and study the ideal low-pass
filter (frequency limited) and its dual window functions (time limited). These transforms are
applied to stochastic processes.

5.4.1. The Ideal Low-Pass Filter

It is useful to find an impulse response [ ]h n whose Fourier transform is

0

0

1 | |
( )

0 | |
jH e ω ω ω

ω ω π
<�

= � < <�
(5.97)

which is the ideal low-pass filter because it lets all frequencies below 0ω pass through unaf-

fected and completely blocks frequencies above 0ω . Using the definition of Fourier trans-

form, we obtain

( ) ( )
0 0

0

0

0 0
0

sin1
[ ] sinc

2 2

j n j n

j n
e e n

h n e d n
jn n

ω ω
ω ω

ω

ω ωω ω
π π π π

−

−

− � �= = = =� �
� �

� (5.98)

where we have defined the so-called sinc function as

sin
sinc( )

x
x

x

π
π

= (5.99)

(a) (b)

(c) (d)
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which is a real and even function of x and is plotted in Figure 5.18. Note that the sinc func-
tion is 0 when x is a nonzero integer.

-8 -6 -4 -2 0 2 4 6 8
-0.5

0

0.5

1

Figure 5.18 A sinc function, which is the impulse response of the ideal low-pass filter with a
scale factor.

Thus, an ideal low-pass filter is noncausal since it has an impulse response with an in-
finite number of nonzero coefficients.

5.4.2. Window Functions

Window functions are signals that are concentrated in time, often of limited duration. While
window functions such as triangular, Kaiser, Barlett, and prolate spheroidal occasionally
appear in digital speech processing systems, the rectangular, Hanning, and Hamming are the
most widely used. Window functions are also concentrated in low frequencies. These win-
dow functions are useful in digital filter design and all throughout Chapter 6.

5.4.2.1. The Rectangular Window

The rectangular window is defined as

[ ] [ ] [ ]h n u n u n Nπ = − − (5.100)

and we refer to it often in this book. Its z-transform is given by

1

0

( )
N

n

n

H z zπ

−
−

=

=� (5.101)

which results in a polynomial of order (N – 1). Multiplying both sides of Eq. (5.101) by 1z− ,
we obtain

1

1

( ) ( ) 1
N

n N

n

z H z z H z zπ π
− − −

=

= = − +� (5.102)

and therefore the sum of the terms of a geometric series can also be expressed as
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1

1
( )

1

Nz
H z

zπ

−

−

−=
−

(5.103)

Although 1z = appears to be a pole in Eq. (5.103), it actually isn’t because it is can-
celed by a zero at 1z = . Since [ ]h nπ has finite length, Eq. (5.25) must be satisfied for

0z ≠ , so the region of convergence is everywhere but at 0z = . Moreover, all finite-length
sequences have a region of convergence that is the complete z-plane except for possibly

0z = .
The Fourier transform of the rectangular window is, using Eq. (5.103):
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( )

/ 2 / 2 / 2

/ 2 / 2 / 2

( 1) / 2 ( 1) / 2

1
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( )
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e e ee
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e A e

ω ω ωω
ω

π ω ω ω ω

ω ωω ω
ω

− −−

− − −

− − − −

−−= =
− −

= =

(5.104)

where ( )A ω is real and even. The function ( )A ω , plotted in Figure 5.19 in dB,8 is 0 for

2 /k k Nω π= with { }0, , 2 ,k N N≠ ± ± � , and is the discrete-time equivalent of the sinc

function.
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Figure 5.19 Frequency response (magnitude in dB) of the rectangular window with N = 50,
which is a digital sinc function.

5.4.2.2. The Generalized Hamming Window

The generalized Hamming window is defined as

8 An energy value E is expressed is decibels (dB) as E E� 10 10log . If the energy value is 2E, it is therefore 3dB
higher. Logarithmic measurements like dB are useful because they correlate well with how the human auditory
system perceives volume.

Normalized Frequency
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( )(1 ) cos 2 / 0
[ ]

0h

n N n N
h n

otherwise

α α π− − ≤ <�
= �
�

(5.105)

and can be expressed in terms of the rectangular window in Eq. (5.100) as

[ ] (1 ) [ ] [ ]cos(2 / )hh n h n h n n Nπ πα α π= − − (5.106)

whose transform is

( 2 / ) ( 2 / )( ) (1 ) ( ) ( / 2) ( ) ( / 2) ( )j j j N j N
hH e H e H e H eω ω ω π ω π

π π πα α α− += − − − (5.107)

after using the modulation property in Table 5.5. When 0.5α = the window is known as the
Hanning window, whereas for 0.46α = it is the Hamming window. Hanning and Hamming
windows and their magnitude frequency responses are plotted in Figure 5.20.

The main lobe of both Hamming and Hanning is twice as wide as that of the rectangu-
lar window, but the attenuation is much greater than that of the rectangular window. The
secondary lobe of the Hanning window is 31 dB below the main lobe, whereas for the
Hamming window it is 44 dB below. On the other hand, the attenuation of the Hanning win-
dow decays with frequency quite rapidly, which is not the case for the Hamming window,
whose attenuation stays approximately constant for all frequencies.
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Figure 5.20 (a) Hanning window and (b) the magnitude of its frequency response in dB; (c)
Hamming window and (d) the magnitude of its frequency response in dB for N = 50.

5.4.3. FIR Filters

From a practical point of view, it is useful to consider LTI filters whose impulse responses
have a limited number of nonzero coefficients:
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0
[ ]

0
nb n M

h n
otherwise

≤ ≤�
= �
�

(5.108)

These types of LTI filters are called finite-impulse response (FIR) filters. The in-
put/output relationship in this case is

0

[ ] [ ]
M

r
r

y n b x n r
=

= −� (5.109)

The z-transform of [ ]x n r− is

( )[ ] [ ] ( )n n r r

n n

x n r z x n z z X z
∞ ∞

− − + −

=−∞ =−∞

− = =� � (5.110)

Therefore, given that the z-transform is linear, ( )H z is

( )1
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− − −

= =

= = = −� ∏ (5.111)

whose region of convergence is the whole z-plane except for possibly 0z = . Since
0

M

r
r

b
=
� is

finite, FIR systems are always stable, which makes them very attractive. Several special
types of FIR filters will be analyzed below: linear-phase, first-order and low-pass FIR filters.

5.4.3.1. Linear-Phase FIR Filters

Linear-phase filters are important because, other than a delay, the phase of the signal is un-
changed. Only the magnitude is affected. Therefore, the temporal properties of the input
signal are preserved. In this section we show that linear-phase FIR filters can be built if the
filter exhibits symmetry.

Let’s explore the particular case of [ ]h n real, 2M L= , an even number, and

[ ] [ ]h n h M n= − (called a Type-I filter). In this case
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(5.112)

where ( )A ω is a real and even function of ω , since the cosine is an even function, and

( )A ω is a linear combination of cosines. Furthermore, we see that the phase
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{ }arg ( )jH e Lω ω= , which is a linear function of ω , and therefore [ ]h n is called a linear-

phase system. It can be shown that if [ ] [ ]h n h M n= − − , we also get a linear phase system

but ( )A ω this time is a pure imaginary and odd function (Type III filter). It is left to the

reader to show that in the case of M being odd the system is still linear phase (Types II and
IV filters). Moreover, [ ]h n doesn’t have to be real and:

*[ ] [ ]h n h M n= ± − (5.113)

is a sufficient condition for [ ]h n to be linear phase.

5.4.3.2. First-Order FIR Filters

A special case of FIR filters is the first-order filter:

[ ] [ ] [ 1]y n x n x nα= + − (5.114)

for real values of α , which, unless 1α = , is not linear phase. Its z-transform is

1( ) 1H z zα −= + (5.115)

It is of interest to analyze the magnitude and phase of its frequency response

2 2

2 2 2

| ( ) | |1 (cos sin ) |

(1 cos ) ( sin ) 1 2 cos

jH e jω α ω ω
α ω α ω α α ω

= + −
= + + = + +

(5.116)

sin
( ) arctan

1 cos
je ω α ωθ

α ω
� �= − � �+� �

(5.117)
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Figure 5.21 Frequency response of the first order FIR filter for various values of α .
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It is customary to display the magnitude response in decibels (dB):

2 210 log | ( ) | 10 log (1 ) 2 cosjH e ω α α ω� �= + +� � (5.118)

as shown in Figure 5.21 for various values of α .
We see that for 0α > we have a low-pass filter whereas for 0α < it is a high-pass

filter, also called a pre-emphasis filter, since it emphasizes the high frequencies. In general,
filters that boost the high frequencies and attenuate the low frequencies are called high-pass
filters, and filters that emphasize the low frequencies and de-emphasize the high frequencies
are called low-pass filters. The parameter α controls the slope of the curve.

5.4.3.3. Window Design FIR Lowpass Filters

The ideal lowpass filter lets all frequencies below 0ω go through and eliminates all energy

from frequencies above that range. As we described in Section 5.4.1, the ideal lowpass filter
has an infinite impulse response, which poses difficulties for implementation in a practical
system, as it requires an infinite number of multiplies and adds.
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Figure 5.22 Magnitude frequency response of the truncated sinc signal (N=200) for

0 / 4ω π= . It is an approximation to the ideal low-pass filter, though we see that overshoots

are present near the transition. The first graph is linear magnitude and the second is in dB.

Since we know that the sinc function decays over time, it is reasonable to assume that
a truncated sinc function that keeps a large enough number of samples N could be a good
approximation to the ideal low-pass filter. Figure 5.22 shows the magnitude of the frequency
response of such a truncated sinc function for different values of N. While the approximation
gets better for larger N, the overshoot near 0ω doesn’t go away and it facts stays at about

Normalized Frequency
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9% of the discontinuity even for large N. This is known as the Gibbs phenomenon, since
Yale professor Josiah Gibbs first noticed it in 1899.

In computing the truncated sinc function, we have implicitly multiplied the ideal low-
pass filter, the sinc function, by a rectangular window. In the so-called window design filter
design method, the filter coefficients are obtained by multiplying the ideal sinc function by a
tapering window function, such as the Hamming window. The resulting frequency response
is the convolution of the ideal lowpass filter function with the transform of the window
(shown in Figure 5.23), and it does not exhibit the overshoots seen above, at the expense of
a slower transition.
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Figure 5.23 Magnitude frequency response of a low-pass filter obtained with the window de-
sign method and a Hamming window (N = 200). The first graph is linear magnitude and the
second is in dB.

5.4.3.4. Parks McClellan Algorithm

While the window design method is simple, it is hard to predict what the final response will
be. Other methods have been proposed whose coefficients are obtained to satisfy some con-
straints. If our constraints are a maximum ripple of pδ in the passband ( 0 pω ω≤ < ), and a

minimum attenuation of sδ in the stopband ( sω ω π≤ < ), the optimal solution is given by

the Parks McClellan algorithm [14].
The transformation

cosx ω= (5.119)

maps the interval 0 ω π≤ ≤ into 1 1x− ≤ ≤ . We note that

Normalized Frequency
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cos( ) (cos )nn Tω ω= (5.120)

where ( )nT x is the nth-order Chebyshev polynomial. The first two Chebychev polynomials

are given by 0 ( ) 1T x = and 1( )T x x= . If we add the following trigonometric identities

cos( 1) cos cos sin sin

cos( 1) cos cos sin sin

n n n

n n n

ω ω ω ω ω
ω ω ω ω ω

+ = −
− = +

(5.121)

and use Eqs. (5.119) and (5.120), we obtain the following recursion formula:

1 1( ) 2 ( ) ( )n n nT x xT x T x+ −= − for 1n > (5.122)

Using Eq. (5.120), the magnitude response of a linear phase Type-I filter in Eq.
(5.112) can be expressed as an Lth-order polynomial in cosω :

0

( ) (cos )
L

k
k

k

A aω ω
=

=� (5.123)

which, using Eq. (5.119) results in a polynomial

0

( )
L

k
k

k

P x a x
=

=� (5.124)
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Figure 5.24 Magnitude frequency response of a length-19 lowpass filter designed with the
Parks McClellan algorithm.

Given that a desired response is ( ) (cos )D x D ω= , we define the weighted squared er-

ror as

( ) (cos ) (cos )[ (cos ) (cos )] ( )[ ( ) ( )]E x E W D P W x D x P xω ω ω ω= = − = − (5.125)

where (cos )W ω is the weighting in ω . A necessary and sufficient condition for this

weighted squared error to be minimized is to have P(x) alternate between minima and
maxima. For the case of a low-pass filter,

Normalized Frequency
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1 cos cos 1
(cos )

0 1 cos cos
p

s

D
ω ω

ω
ω ω
≤ ≤�

= � − ≤ ≤�
(5.126)

and the weight in the stopband is several times larger that in the passband.
These constraints and the response of a filter designed with such a method are shown

in Figure 5.24. We can thus obtain a similar transfer function with fewer coefficients using
this method.

5.4.4. IIR Filters

Other useful filters are a function of past values of the input and also the output

1 0

[ ] [ ] [ ]
N M

k r
k r

y n a y n k b x n r
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whose z-transform is given by
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which in turn can be expressed as a function of the roots of the numerator rc (called zeros),

and denominator kd (called poles) as
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(5.129)

It is not obvious what the impulse response of such a system is by looking at either Eq.
(5.128) or Eq. (5.129). To do that, we can compute the inverse z-transform of Eq. (5.129). If
M N< in Eq. (5.129), ( )H z can be expanded into partial fractions (see Section 5.2.3.3) as
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which we can now compute, since we know that the inverse z-transform of
1( ) /(1 )k k kH z A d z−= − is

[ ] | | 1
[ ]

[ 1] | | 1

n
k k k

k n
k k k

A d u n d
h n

A d u n d

� <�= �− − − >��
(5.132)

so that the convergence region includes the unit circle and therefore [ ]kh n is stable. There-

fore, a necessary and sufficient condition for ( )H z to be stable and causal simultaneously is

that all its poles be inside the unit circle: i.e., | | 1kd < for all k, so that its impulse response is

given by

1

[ ] [ ]
N

n
n k k

k

h n B A d u n
=

= +� (5.133)

which has an infinite impulse response, and hence its name.
Since IIR systems may have poles outside the unit circle, they are not guaranteed to be

stable and causal like their FIR counterparts. This makes IIR filter design more difficult,
since only stable and causal filters can be implemented in practice. Moreover, unlike FIR
filters, IIR filters do not have linear phase. Despite these difficulties, IIR filters are popular
because they are more efficient than FIR filters in realizing steeper roll-offs with fewer coef-
ficients. In addition, as shown in Chapter 6, they represent many physical systems.

5.4.4.1. First-Order IIR Filters

An important type of IIR filter is the first-order filter of the form

[ ] [ ] [ 1]y n Ax n y nα= + − (5.134)

for α real. Its transfer function is given by

1
( )

1

A
H z

zα −=
−

(5.135)

This system has one pole and no zeros. As we saw in our discussion of z-transforms in
Section 5.2.3, a necessary condition for this system to be both stable and causal is that
| | 1α < . Since for the low-pass filter case 0 1α< < , it is convenient to define beα −= where

0b > . In addition, the corresponding impulse response is infinite:

[ ] [ ]nh n u nα= (5.136)

whose Fourier transform is
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and magnitude square is given by

2
2

2

| |
| ( ) |

1 2 cos
j A

H e ω

α α ω
=

+ −
(5.138)

which is shown in Figure 5.25 for 0α > , which corresponds to a low-pass filter.

Figure 5.25 Magnitude frequency response of the first-order IIR filter.

The bandwidth of a low-pass filter is defined as the point where its magnitude square
is half of its maximum value. Using the first-order Taylor approximation of the exponential
function, the following approximation can be used when 0b → :
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(5.139)

If the bandwidth bω is also small, we can similarly approximate
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(5.140)

so that for b bω = we have 2 0 2| ( ) | 0.5 | ( ) |jb jH e H e≈ . In other words, the bandwidth of this

filter equals b , for small values of b . The relative error in this approximation9 is smaller
than 2% for 0.5b < , which corresponds to 0.6 1α< < . The relationship with the unnormal-
ized bandwidth B is

2 / sB Fe πα −= (5.141)

9 The exact value is arccos 2 coshb bω = −� �� � , where ( )cosh / 2b bb e e−= + is the hyperbolic cosine.
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For 0α < it behaves as a high-pass filter, and a similar discussion can be carried out.

5.4.4.2. Second-Order IIR Filters

An important type of IIR filters is the set of second-order filters of the form

1 2[ ] [ ] [ 1] [ 2]y n Ax n a y n a y n= + − + − (5.142)

whose transfer function is given by

1 2
1 2

( )
1

A
H z

a z a z− −=
− −

(5.143)

This system has two poles and no zeros. A special case is when the coefficients A , 1a

and 2a are real. In this case the two poles are given by

2
1 1 24

2

a a a
z

± +
= (5.144)

which for the case of 2
1 24 0a a+ > yields two real roots, and is a degenerate case of two

first-order systems. The more interesting case is when 2
1 24 0a a+ < . In this case we see that

the two roots are complex conjugates of each other, which can be expressed in their magni-
tude and phase notation as

0jz e σ ω− ±= (5.145)

As we mentioned before, 0σ > is a necessary and sufficient condition for the poles to be
inside the unit circle and thus for the system to be stable. With those values, the z-transform
is given by

0 0 1 2 21 1
0

( )
1 2 cos( )(1 )(1 )j j

A A
H z

e z e ze z e zσ ω σ ω σ σω− + − − − − − −− −= =
− +− −

(5.146)

In Figure 5.26 we show the magnitude of its Fourier transform for a value of σ and

0ω . We see that the response is centered around 0ω and is more concentrated for smaller

values of σ . This is a type of bandpass filter, since it favors frequencies in a band around

0ω . It is left to the reader as an exercise to show that the bandwidth10 is approximately 2σ .

The smaller the ratio 0/σ ω , the sharper the resonance. The filter coefficients can be ex-

pressed as a function of the unnormalized bandwidth B and resonant frequency F and the
sampling frequency sF (all expressed in Hz) as

( )/
1 2 cos 2 /sB F

sa e F Fπ π−= (5.147)

10 The bandwidth of a bandpass filter is the region between half maximum magnitude squared values.
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2 /
2

sB Fa e π−= − (5.148)

These types of systems are also known as second-order resonators and will be of great
use for speech synthesis (Chapter 16), particularly for formant synthesis.
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Figure 5.26 Frequency response of the second-order IIR filter for center frequency of
0.1 sF F= and bandwidth 0.01 sB F= .

5.5. DIGITAL PROCESSING OF ANALOG SIGNALS

To use the digital signal processing methods, it is necessary to convert the speech signal
( )x t , which is analog, to a digital signal [ ]x n , which is formed by periodically sampling the

analog signal ( )x t at intervals equally spaced T seconds apart:

[ ] ( )x n x nT= (5.149)

where T is defined as the sampling period, and its inverse 1/sF T= as the sampling fre-

quency. In the speech applications considered in this book, sF can range from 8000 Hz for

telephone applications to 44,100 Hz for high-fidelity audio applications. This section ex-
plains the sampling theorem, which essentially says that the analog signal ( )x t can be

uniquely recovered given its digital signal [ ]x n if the analog signal ( )x t has no energy for

frequencies above the Nyquist frequency / 2sF .

We not only prove the sampling theorem, but also provide great insight into the ana-
log-digital conversion, which is used in Chapter 7.

5.5.1. Fourier Transform of Analog Signals

The Fourier transform of an analog signal ( )x t is defined as

Normalized Frequency
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( ) ( ) j tX x t e dt
∞ − Ω

−∞
Ω = � (5.150)

with its inverse transform being

1
( ) ( )

2
j tx t X e d

π
∞ Ω

−∞
= Ω Ω� (5.151)

They are transform pairs. You can prove similar relations for the Fourier transform of
analog signals as for their digital signals counterpart.

5.5.2. The Sampling Theorem

Let’s define ( )px t

( ) ( ) ( )px t x t p t= (5.152)

as a sampled version of ( )x t , where

( ) ( )
n

p t t nTδ
∞

=−∞

= −� (5.153)

where ( )tδ is the Dirac delta defined in Section 5.3.2.1. Therefore, ( )px t can also be ex-

pressed as

( ) ( ) ( ) ( ) ( ) [ ] ( )p
n n n

x t x t t nT x nT t nT x n t nTδ δ δ
∞ ∞ ∞

=−∞ =−∞ =−∞

= − = − = −� � � (5.154)

after using Eq. (5.149). In other words, ( )px t can be uniquely specified given the digital

signal [ ]x n .

Using the modulation property of Fourier transforms of analog signals, we obtain

1
( ) ( ) ( )

2pX X P
π

Ω = Ω ∗ Ω (5.155)

Following a derivation similar to that in Section 5.3.2.2, one can show that the trans-
form of the impulse train ( )p t is given by

2
( ) ( )s

k

P k
T

π δ
∞

=−∞

Ω = Ω − Ω� (5.156)

where 2s sFπΩ = and 1/sF T= , so that

1
( ) ( )p s

k

X X k
T

∞

=−∞

Ω = Ω − Ω� (5.157)
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From Figure 5.27 it can be seen that if

( ) 0X Ω = for | | / 2sΩ > Ω (5.158)

then X(Ω) can be completely recovered from ( )pX Ω as follows

( ) ( ) ( )
s pX R XΩΩ = Ω Ω (5.159)

where

1 | | / 2
( )

0s

sR
otherwiseΩ

Ω < Ω�
Ω = �

�
(5.160)

is an ideal lowpass filter. We can also see that if Eq. (5.158) is not met, then aliasing will
take place and X(Ω) can no longer be recovered from ( )pX Ω . Since, in general, we cannot

be certain that Eq. (5.158) is true, the analog signal is low-pass filtered with an ideal filter
given by Eq. (5.160), which is called anti-aliasing filter, prior to sampling. Limiting the
bandwidth of our analog signal is the price we have to pay to be able to manipulate it digi-
tally.

Figure 5.27 ( )X Ω , ( )pX Ω for the case of no aliasing and aliasing.

The inverse Fourier transform of Eq. (5.160), computed through Eq. (5.151), is a sinc
function

( )sin /
( ) sinc( / )

/T

t T
r t t T

t T

π
π

= = (5.161)

so that using the convolution property in Eq. (5.159) we obtain

… …

Ωs/2-Ωs/2 Ωs-Ωs

( )X Ω

( )pX Ω

…

Ωs/2-Ωs/2 Ωs-Ωs

…

( )pX Ω
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( ) ( ) ( ) ( ) [ ] ( ) [ ] ( )T p T T
k k

x t r t x t r t x k t kT x k r t kTδ
∞ ∞

=−∞ =−∞

= ∗ = ∗ − = −� � (5.162)

The sampling theorem states that we can recover the continuous time signal ( )x t just

from its samples [ ]x n using Eqs. (5.161) and (5.162). The angular frequency 2s sFπΩ = is

expressed in terms of the sampling frequency SF . 1/ sT F= is the sampling period, and

/ 2sF the Nyquist frequency. Equation (5.162) is referred to as bandlimited interpolation

because ( )x t is reconstructed by interpolating [ ]x n with sinc functions that are bandlimited.

Now let’s see the relationship between ( )pX Ω and ( )jX e ω , the Fourier transform of

the discrete sequence [ ]x n . From Eq. (5.154) we have

( ) [ ] j nT
p

n

X x n e
∞

− Ω

=−∞

Ω = � (5.163)

so that the continuous transform ( )pX Ω equals the discrete Fourier transform ( )jX e ω at

Tω = Ω .

5.5.3. Analog-to-Digital Conversion

The process of converting an analog signal ( )x t into a digital signal [ ]x n is called Analog-

to-Digital conversion, or A/D for short, and the device that does it called an Analog-to-
Digital Converter. In Section 5.5.2 we saw that an ideal low-pass anti-aliasing filter was
required on the analog signal, which of course is not realizable in practice so that an ap-
proximation has to be used. In practice, sharp analog filters can be implemented on the same
chip using switched capacitor filters, which have attenuations above 60 dB in the stop band
so that aliasing tends not to be an important issue for speech signals. The passband is not
exactly flat, but this again does not have much significance for speech signals (for other sig-
nals, such as those used in modems, this issue needs to be studied more carefully).

Although such sharp analog filters are possible, they can be expensive and difficult to
implement. One common solution involves the use of a simple analog low-pass filter with a
large attenuation at / 2sMF , a multiple of the required cutoff frequency. Then over-

sampling is done at the new rate sMF , followed by a sharper digital filter with a cut-off fre-

quency of / 2sF and downsampling (see Section 5.6). This is equivalent to having used a

sharp analog filter, with the advantage of a lower-cost implementation. This method also
allows variable sampling rates with minimal increase in cost and complexity. This topic is
discussed in more detail in Chapter 7 in the context of sigma-delta modulators.

In addition, the pulses in Eq. (5.59) cannot be zero length in practice, and therefore the
sampling theorem does not hold. However, current hardware allows the pulses to be small
enough that the analog signal can be approximately recovered. The signal level is then main-
tained during T seconds, while the conversion to digital is being carried out.
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A real A/D converter cannot provide real numbers for [ ]x n , but rather a set of integers

typically represented with 16 bits, which gives a range between –32,768 and 32,767. Such
conversion is achieved by comparing the analog signal to a number of different signal levels.
This means that quantization noise has been added to the digital signal. This is typically not
a big problem for speech signals if using 16 bits or more since, as is shown in Chapter 7,
other noises will mask the quantization noise anyway. Typically, quantization noise be-
comes an issue only if 12 or fewer bits are used. A more detailed study of the effects of
quantization is presented in Chapter 7.

Finally, A/D subsystems are not exactly linear, which adds another source of distor-
tion. This nonlinearity can be caused by, among things, jitter and drift in the pulses and un-
evenly spaced comparators. For popular A/D subsystems, such as sigma-delta A/D, an offset
is typically added to [ ]x n , which in practice is not very important, because speech signals

do not contain information at 0f = , and thus can be safely ignored.

5.5.4. Digital-to-Analog Conversion

The process of converting the digital signal [ ]x n back into an analog ( )x t is called digital-

to-analog conversion, or D/A for short. The ideal band-limited interpolation requires ideal
sinc functions as shown in Eq. (5.162), which are not realizable. To convert the digital signal
to analog, a zero-order hold filter

0

1 0
( )

0 otherwise

t T
h t

< <�
= �
�

(5.164)

is often used, which produces an analog signal as shown in Figure 5.28. The output of such a
filter is given by

0 0 0( ) ( ) [ ] ( ) [ ] ( )
n n

x t h t x n t nT x n h t nTδ
∞ ∞

=−∞ =−∞

= ∗ − = −� � (5.165)

-3T -2T -T 0

T 2T

3T

x0(t)

xa(t)

t

Figure 5.28 Output of a zero-order hold filter.

The Fourier transform of the zero-hold filter in Eq. (5.164) is, using Eq. (5.150),
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/ 2
0

2sin( / 2)
( ) j TT

H e− ΩΩΩ =
Ω

(5.166)

and, since we need an ideal lowpass filter to achieve the band-limited interpolation of Eq.
(5.162), the signal 0 ( )x t has to be filtered with a reconstruction filter with transfer function

/ 2/ 2
/

sin( / 2)( )

0 /

j T

r

T
e T

TH

T

π

π

ΩΩ� Ω <� ΩΩ = �
� Ω >�

(5.167)

In practice, the phase compensation is ignored, as it amounts to a delay of T/2 seconds. Its
magnitude response can be seen in Figure 5.29. In practice, such an analog filter is not real-
izable and an approximation is made. Since the zero-order hold filter is already low-pass, the
reconstruction filter doesn’t need to be that sharp.

−
π
T

π
T

H jr ( )Ω

1

Figure 5.29 Magnitude frequency response of the reconstruction filter used in digital-to-
analog converters after a zero-hold filter.

In the above discussion we note that practical A/D and D/A systems introduce distor-
tions, which causes us to wonder whether it is a good idea to go through this process just to
manipulate digital signals. It turns out that for most speech processing algorithms described
in Chapter 6, the advantages of operating with digital signals outweigh the disadvantage of
the distortions described above. Moreover, commercial A/D and D/A systems are such that
the errors and distortions can be arbitrarily small. The fact that music in digital format (as in
compact discs) has won out over analog format (cassettes) shows that this is indeed the case.
Nonetheless, it is important to be aware of the above limitations when designing a system.

5.6. MULTIRATE SIGNAL PROCESSING

The term Multirate Signal Processing refers to processing of signals sampled at different
rates. A particularly important problem is that of sampling-rate conversion. It is often the
case that we have a digital signal [ ]x n sampled at a sampling rate sF , and we want to obtain

an equivalent signal [ ]y n but at a different sampling rate sF ′ . This often occurs in A/D sys-

tems that oversample in order to use smaller quantizers, such as a delta or sigma delta-
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quantizer (see Chapter 7), and a simpler analog filter, and then have to downsample the sig-
nal. Other examples include mixing signals of different sampling rates and downsampling to
reduce computation (many signal processing algorithms have a computational complexity
proportional to the sampling rate or its square).

A simple solution is to convert the digital signal [ ]x n into an analog signal ( )x t with

a D/A system running at sF and then convert it back to digital with an A/D system running

at sF ′ . An interesting problem is whether this could be done in the digital domain directly,

and the techniques to do so belong to the general class of multi-rate processing.

5.6.1. Decimation

If we want to reduce the sampling rate by a factor of M, i.e., T MT′ = , we take every M
samples. In order to avoid aliasing, we need to lowpass filter the signal to bandlimit it to
frequencies 1/T ′ . This is shown in Figure 5.30, where the arrow pointing down indicates
the decimation.

Figure 5.30 Block diagram of the decimation process.

Since the output is not desired at all instants n, but only every M samples, the compu-
tation can be reduced by a factor of M over the case where lowpass filtering is done first and
decimation later. To do this we express the analog signal ( )lx t at the output of the lowpass

filter as

( ) [ ] ( )l T
k

x t x k r t kT
∞

′
=−∞

= −� (5.168)

and then look at the value t nT′ ′= . The decimated signal [ ]y n is then given by

( )[ ] ( ) [ ] [ ]sincl T
k k

Mn k
y n x nT x k r nT kT x k

M

∞ ∞

′
=−∞ =−∞

−� �′ ′= = − = � �
� �

� � (5.169)

which can be expressed as

[ ][ ] [ ]
k

y n x k h Mn k
∞

=−∞

= −� (5.170)

where

[ ] sinc( / )h n n M= (5.171)

rT’[n] y[n]Mx[n]
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In practice, the ideal lowpass filter h[n] is approximated by an FIR filter with a cutoff
frequency of 1/(2M).

5.6.2. Interpolation

If we want to increase the sampling rate by a factor of N, so that /T T N′ = , we do not have
any aliasing and no further filtering is necessary. In fact we already know one out of every N
output samples

[ ] [ ]y Nn x n= (5.172)

and we just need to compute the ( 1)N − samples in-between. Since we know that [ ]x n is a

bandlimited signal, we can use the sampling theorem in Eq. (5.162) to reconstruct the analog
signal as

( ) [ ] ( )l T
k

x t x k r t kT
∞

=−∞

= −� (5.173)

and thus the interpolated signal y[n] as

( )[ ] ( ) [ ] [ ]sincT
k k

n kN
y n x nT x k r nT kT x k

N

∞ ∞

=−∞ =−∞

−� �′ ′= = − = � �
� �

� � (5.174)

Now let’s define

[ ]
[ ]

0

x Nk k Nk
x k

otherwise

′ =�′ ′ = �
�

(5.175)

which, inserted into Eq. (5.174), gives

( )[ ] [ ]sinc ( ) /
k

y n x k n k N
∞

′=−∞

′ ′ ′= −� (5.176)

This can be seen in Figure 5.31, where the block with the arrow pointing up imple-
ments Eq. (5.175).

Figure 5.31 Block diagram of the interpolation process.

Equation (5.174) can be expressed as

[ ][ ] [ ]
k

y n x k h n kN
∞

=−∞

= −� (5.177)

rT[n] y[n]Nx[n]
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where we have defined

[ ] sinc( / )h n n N= (5.178)

Again, in practice, the ideal low-pass filter h[n] is approximated by an FIR filter with a
cutoff frequency of 1/(2N).

5.6.3. Resampling

To resample the signal so that /T TM N′ = , or ( )/s sF F N M′ = , we can first upsample the

signal by N and then downsample it by M. However, there is a more efficient way. Proceed-
ing similarly to decimation and interpolation, one can show the output is given by

[ ] [ ] [ ]
k

y n x k h nM kN
∞

=−∞

= −� (5.179)

where

[ ] sinc
max( , )

n
h n

N M

� �
= � �

� �
(5.180)

for the ideal case. In practice, h[n] is an FIR filter with a cutoff frequency of

( )1/ 2max( , )N M . We can see that Eq. (5.179) is a superset of Eqs. (5.170) and (5.177).

5.7. FILTERBANKS

A filterbank is a collection of filters that span the whole frequency spectrum. In this section
we describe the fundamentals of filterbanks, which are used in speech and audio coding,
echo cancellation, and other applications. We first start with a filterbank with two equal
bands, then explain multi-resolution filterbanks, and present the FFT as a filterbank. Finally
we introduce the concept of lapped transforms and wavelets.

5.7.1. Two-Band Conjugate Quadrature Filters

A two-band filterbank is shown in Figure 5.32, where the filters 0[ ]f n and 0[ ]g n are low-

pass filters, and the filters 1[ ]f n and 1[ ]g n are high-pass filters, as shown in Figure 5.33.

Since the output of 0[ ]f n has a bandwidth half of that of x[n], we can sample it at half the

rate of x[n]. We do that by decimation (throwing out every other sample), as shown in
Figure 5.32. The output of such a filter plus decimation is 0[ ]x m . Similar results can be

shown for 1[ ]f n and 1[ ]x n .
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For reconstruction, we upsample 0[ ]x m , by inserting a 0 between every sample. Then

we low-pass filter it with filter 0[ ]g n to complete the interpolation, as we saw in Section

5.6. A similar process can be done with the high pass filters 1[ ]f n and 1[ ]g n . Adding the

two bands produces [ ]x n� , which is identical to x[n] if the filters are ideal.

Figure 5.32 Two-band filterbank.

In practice, however, ideal filters such as those in Figure 5.33 are not achievable, so
we would like to know if it is possible to build a filterbank that has perfect reconstruction
with FIR filters. The answer is affirmative, and in this section we describe conjugate quadra-
ture filters, which are the basis for the solutions.

Figure 5.33 Ideal frequency responses of analysis and synthesis filters for the two-band filter-
bank.

To investigate this, let’s analyze the cascade of a downsampler and an upsampler
(Figure 5.34). The output y[n] is a signal whose odd samples are zero and whose even sam-
ples are the same as those of the input signal x[n].

Figure 5.34 Cascade of a downsampler and an upsampler.
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The z-transform of the output is given by

1 1
( ) [ ] [ ] ( 1) [ ]

2 2

( ) ( )

2

n even

n n n n

n n n

Y z x n z x n z x n z

X z X z

∞ ∞ ∞
− − −

=−∞ =−∞ =−∞
= = + −

+ −=
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(5.181)

Using Eq. (5.181) and the system in Figure 5.32, we can express the z-transform of the
output in Figure 5.32 as

0 0 1 1

0 0 1 1

0 0 1 1
0 1

( ) ( ) ( ) ( )
( ) ( )

2

( ) ( ) ( ) ( )
( )

2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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2 2

F z G z F z G z
X z X z

F z G z F z G z
X z

F z X z F z X z F z X z F z X z
G z G z

+� �= � �
� �

− + −� �+ −� �
� �

+ − − + − −� � � �= +� �� �
� �� �

�

(5.182)

which for perfect reconstruction requires the output to be a delayed version of the input, and
thus

( 1)
0 0 1 1

0 0 1 1

( ) ( ) ( ) ( ) 2

( ) ( ) ( ) ( ) 0

LF z G z F z G z z

F z G z F z G z

− −+ =
− + − =

(5.183)

These conditions are met if we select the so-called Conjugate Quadrature Filters
(CQF) [17], which are FIR filters that specify 1[ ]f n , 0[ ]g n , and 1[ ]g n as a function of

0[ ]f n :

1 0

0 0

1 1

[ ] ( 1) [ 1 ]

[ ] [ 1 ]

[ ] [ 1 ]

nf n f L n

g n f L n

g n f L n

= − − −
= − −
= − −

(5.184)

where 0[ ]f n is an FIR filter of even length L. The z-transforms of Eq. (5.184) are

( 1) 1
1 0

( 1) 1
0 0

1 0

( ) ( )

( ) ( )

( ) ( )

L

L

F z z F z

G z z F z

G z F z

− − −

− − −

= −

=
= −

(5.185)

so that the second equation in Eq. (5.183) is met if L is even. In order to analyze the first
equation in Eq. (5.183), let’s define ( )P z as



Filterbanks 253

1
0 0

0 0

( ) ( ) ( )

[ ] [ ] [ ]
m

P z F z F z

p n f m f m n

−=

= +�
(5.186)

then insert Eq. (5.185) into (5.183), use Eq. (5.186), and obtain the following condition:

( ) ( ) 2P z P z+ − = (5.187)

Taking the inverse z-transform of Eq. (5.186) and using Eq. (5.181), we obtain

1 0
[ ]

0 2

n
p n

n k

=�
= � =�

(5.188)

so that all even samples of the autocorrelation of 0[ ]f n are zero, except for n = 0. Since

0[ ]f n is a half-band low-pass filter, [ ]p n is also a half-band low-pass filter. The ideal half-

band filter h[n]

sin( / 2)
[ ]

n
h n

n

π
π

= (5.189)

satisfies Eq. (5.188), as does any half-band zero-phase filter (a linear phase filter with no
delay). Therefore, the steps to build CQF are

1. Design a (2L - 1) tap11 half-band linear-phase low-pass filter [ ]p n with any avail-

able technique, for an even value of L. For example, one could use the Parks
McClellan algorithm, constraining the passband and stopband cutoff frequencies
so that p sω π ω= − and using an error weighting that is the same for the passband

and stopband. This results in a half-band linear-phase filter with equal ripple δ in
both bands. Another possibility is to multiply the ideal half-band filter in Eq.
(5.189) by a window with low-pass characteristics.

2. Add a value δ to [0]p so that we can guarantee that ( ) 0jP e ω ≥ for all ω and

thus is a legitimate power spectral density.
3. Spectrally factor 1

0 0( ) ( ) ( )P z F z F z−= by computing its roots.

4. Compute 1[ ]f n , 0[ ]g n and 1[ ]g n from Eq. (5.184).

5.7.2. Multiresolution Filterbanks

While the above filterbank has equal bandwidth for both filters, it may be desirable to have
varying bandwidths, since it has been proven to work better in speech recognition systems.
In this section we show how to use the two-band conjugate quadrature filters described in
the previous section to design a filterbank with more than two bands. In fact, multi-

11 A filter with N taps is a filter of length N.
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resolution analysis such as that of Figure 5.35, are possible with bands of different band-
widths (see Figure 5.36).

Figure 5.35 Analysis part of a multi-resolution filterbank designed with conjugate quadrature
filters. Only 0[ ]f n needs to be specified.

Figure 5.36 Ideal frequency responses of the multi-resolution filterbank of Figure 5.35. Note
that 0[ ]x n and 1[ ]x n occupy 1/8 of the total bandwidth.

Figure 5.37 Two different time-frequency tilings: the non-uniform filterbank and that obtain
through a short-time Fourier transform. Notice that the area of each tile is constant.
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One interesting result is that the product of time resolution and frequency resolution is
constant (all the tiles in Figure 5.37 have the same area), since filters with smaller band-
widths do not need to be sampled as often. Instead of using Fourier basis for decomposition,
multi-resolution filterbanks allow more flexibility in the tiling of the time-frequency plane.

5.7.3. The FFT as a Filterbank

It turns out that we can use the Fourier transform to construct a filterbank. To do that, we
decompose the input signal [ ]x n as a sum of short-time signals [ ]mx n

[ ] [ ]m
m

x n x n
∞

=−∞

= � (5.190)

where [ ]mx n is obtained as

[ ] [ ] [ ]m mx n x n w n= (5.191)

the product of [ ]x n by a window function [ ]mw n of length N. From Eqs. (5.190) and (5.191)

we see that the window function has to satisfy

[ ] 1m
m

w n
∞

=−∞

=� n∀ (5.192)

If the short-term signals [ ]mx n are spaced M samples apart, we define the window

[ ]mw n as:

[ ] [ ]mw n w n Mm= − (5.193)

where w[n] = 0 for 0n < and n N> . The windows [ ]mw n overlap in time while satisfying

Eq. (5.192).
Since [ ]mx n has N nonzero values, we can evaluate its length-N DFT as

1

0

1 1

0 0

[ ] [ ]

[ ] [ ] [ ] [ ]

k

k

N
j l

m m
l

N N
j l

k
l l

X k x Mm l e

x Mm l w l e x Mm l f l

ω

ω

−
−

=

− −
−

= =

= +

= + = + −

�

� �

(5.194)

where 2 /k k Nω π= and the analysis filters [ ]kf l are given by

[ ] [ ] kj l
kf l w l e ω= − (5.195)

If we define [ ]kX n� as
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1

0

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
N

k k k k
r l

X n x n f n x n r f r x n l f l
∞ −

=−∞ =

= ∗ = − = + −� �� (5.196)

then Eqs. (5.194) and (5.196) are related by

[ ] [ ]m kX k X mM= � (5.197)

This manipulation is shown in Figure 5.38, so that the DFT output [ ]mX k is [ ]kX n�

decimated by M.

Figure 5.38 Fourier analysis used to build a linear filter.

The short-time signal [ ]mx n can be recovered through the inverse DFT of [ ]mX k as

1

0

[ ] [ ] [ ] k

N
j l

m m
k

x mM l h l X k e ω
−

=

+ = � (5.198)

where h[n] has been defined as

1/ 0
[ ]

0 otherwise

N n N
h n

≤ <�
= �
�

(5.199)

so that Eq. (5.198) is valid for all values of l, and not just 0 l N≤ < .
Making the change of variables mM l n+ = in Eq. (5.198) and inserting it into Eq.

(5.190) results in

1
( )

0

1

0

[ ] [ ] [ ]

[ ] [ ]

k

N
j n mM

m
m k

N

m k
k m

x n h n mM X k e

X k g n mM

ω
∞ −

−

=−∞ =

− ∞

= =−∞

= −

= −

� �

� �

(5.200)

where the synthesis filters [ ]kg n are defined as

[ ] [ ] kj n
kg n h n e ω= (5.201)

Now, let’s define the upsampled version of [ ]mX k as

[ ]ˆ [ ]
0 otherwise

m
k

X k l mM
X l

=�
= �
�

(5.202)

x[n]
[ ]mX k

[ ]kf n M
[ ]kX n�
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which, inserted into Eq. (5.200), yields

1 1

0 0

ˆ ˆ[ ] [ ] [ ] [ ] [ ]
N N

k k k k
k l k

x n X l g n l X n g n
− ∞ −

= =−∞ =

= − = ∗�� � (5.203)

Thus, the signal can be reconstructed. The block diagram of the analysis/resynthesis
filterbank implemented by the DFT can be seen in Figure 5.39, where [ ] [ ]k mx m X k= and

[ ] [ ]x n x n=� .

Figure 5.39 A filterbank with N analysis and synthesis filters.

For perfect reconstruction we need N M≥ . If w[n] is a rectangular window of length
N, the frame rate has to be M N= . We can also use overlapping windows with 2N M=
(50% overlap), such as Hamming or Hanning windows, and still get perfect reconstruction.
The use of such overlapping windows increases the data rate by a factor of 2, but the analy-
sis filters have much less spectral leakage because of the higher attenuation of the Ham-
ming/Hanning window outside the main lobe.

5.7.4. Modulated Lapped Transforms

The filterbank of Figure 5.39 is useful because, as we see in Chapter 7, it is better to quan-
tize the spectral coefficients than the waveform directly. If the DFT coefficients are quan-
tized, there will be some discontinuities at frame boundaries. To solve this problem we can
distribute the window w[n] between the analysis and synthesis filters so that

[ ] [ ] [ ]a sw n w n w n= (5.204)

x[n]

f0[n] x0[m]

f1[n] x1[m]

g0[n]

g1[n]

+

~[ ]x n

M

Analysis DFT Synthesis DFT

fN-1[n] xN-1[m] gN-1[n]

… …

M

M

M

M
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so that the analysis filters are given by

[ ] [ ] kj n
k af n w n e ω= − (5.205)

and the synthesis filters by

[ ] [ ] kj n
k sg n w n e ω−= (5.206)

This way, if there is a quantization error, the use of a tapering synthesis window will
substantially decrease the border effect. A common choice is [ ] [ ]a sw n w n= , which for the

case of w[n] being a Hanning window divided by N, results in

1
[ ] [ ] sina s

n
w n w n

NN

π� �= = � �
� �

for 0 n N≤ < (5.207)

so that the analysis and synthesis filters are the reversed versions of each other:

2 /sin( / )
[ ] [ ] [ ] [ ]j nk N N

k k N k

n N
f n g n e n h n

N
ππ− = = Π = (5.208)

whose frequency response can be seen in Figure 5.40.
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Figure 5.40 Frequency response of the Lapped Orthogonal Transform filterbank.

The functions [ ]N
kh n in Eq. (5.208) are sine modulated complex exponentials, which

have the property

/ 2 1/ 2[ ] 2 [2 ]N N
k kh n h n−= (5.209)
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which is a property typical of functions called wavelets, i.e., they can be obtained from each
other by stretching by 2 and scaling them appropriately. Such wavelets can be seen in Figure
5.41.
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Figure 5.41 Iterations of the wavelet [ ]N
kh n for several values of k and N.

If instead of modulating a complex exponential we use a cosine sequence, we obtain
the Modulated Lapped Transform (MLT) [7], also known as the Modified Discrete Cosine
Transform (MDCT):

2 1 1
[2 1 ] [ ] [ ] cos

2 2kn k k

M
p f M n g n h n k n

M M

π� + �� �� �= − − = = + +� �� �� �
	 
	 
� �

(5.210)

for 0,1, , 1k M= −� and 0,1, , 2 1n M= −� . There are M filters with 2M taps each, and
h[n] is a symmetric window [ ] [2 1 ]h n h M n= − − that satisfies

2 2[ ] [ ] 1h n h n M+ + = (5.211)

where the most common choice for h[n] is

1
[ ] sin

2 2
h n n

M

π� �� �= +� �� �
	 
� �

(5.212)

A fast algorithm can be used to compute these filters based on the DCT, which is called the
Lapped Orthogonal Transform (LOT).

5.8. STOCHASTIC PROCESSES

While in this chapter we have been dealing with deterministic signals, we also need to deal
with noise, such as the static present in a poorly tuned AM station. To analyze noise signals
we need to introduce the concept of stochastic processes, also known as random processes.
A discrete-time stochastic process [ ]nx , also denoted by nx , is a sequence of random vari-

ables for each time instant n. Continuous-time stochastic processes ( )tx , random variables

for each value of t, will not be the focus of this book, though their treatment is similar to that
of discrete-time processes. We use bold for random variables and regular text for determi-
nistic signals.
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Here, we cover the statistics of stochastic processes, defining stationary and ergodic
processes and the output of linear systems to such processes.

Example
We can define a random process x[n] as

[ ] cos[ ]n nω= +x φ (5.213)

where φ is real random variable with a uniform pdf in the interval ( , )π π− . Several realiza-

tions of this random process are displayed in Figure 5.42.

Figure 5.42 Several realizations of a sinusoidal random process with a random phase.

5.8.1. Statistics of Stochastic Processes

In this section we introduce several statistics of stochastic processes such as distribution,
density function, mean and autocorrelation. We also define several types of processes de-
pending on these statistics.

For a specific n, [ ]nx is a random variable with distribution

( , ) { [ ] }F x n P n x= ≤x (5.214)

Its first derivative with respect to x is the first-order density function, or simply the probabil-
ity density function (pdf)

( , )
( , )

dF x n
f x n

dx
= (5.215)

The second-order distribution of the process [ ]nx is the joint distribution

1 2 1 2 1 1 2 2( , ; , ) { [ ] , [ ] }F x x n n P n x n x= ≤ ≤x x (5.216)
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of the random variables 1[ ]nx and 2[ ]nx . The corresponding density equals

2
1 1 1 2

1 2 1 2
1 2

( , ; , )
( , ; , )

F x x n n
f x x n n

x x

∂=
∂ ∂

(5.217)

A complex random process [ ] [ ] [ ]r in n j n= +x x x is specified in terms of the joint sta-

tistics of the real processes [ ]r nx and [ ]i nx .

The mean [ ]nµ of [ ]nx , also called first-order moment, is defined as the expected

value of the random variable [ ]nx for each value of n:

{ }[ ] [ ] [ ] ( , )x n E n n f n dµ
∞

−∞
= = �x x x x (5.218)

The autocorrelation of complex random process [ ]nx , also called second-order moment, is

defined as

{ }1 2 1 2 2 1[ , ] [ ] [ ] [ , ]xx xxR n n E n n R n n∗ ∗= =x x (5.219)

which is a statistical average, unlike the autocorrelation of a deterministic signal defined in
Eq. (5.45), which was an average over time.

Example
Let’s look at the following sinusoidal random process

[ ] cos[ ]n nω= +x r φ (5.220)

where r and φ are independent and φ is uniform in the interval ( , )π π− . This process is

zero-mean because

{ } { } { }[ ] cos[ ] cos[ ] 0x n E n E E nµ ω ω= + = + =r φ r φ (5.221)

since r and φ are independent and

{ } 1
cos[ ] cos[ ] 0

2
E n n d

π

π
ω ω

π−
+ = + =�φ φ φ (5.222)

Its autocorrelation is given by

{ }

2
1 2 1 2

2
1 2 2 1

2
2 1

1
[ , ] { } cos[ ]cos[ ]

2
1 1

{ } cos[ ( ) ] cos[ ( )]
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xxR n n E n n d
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E n n

π

π

π

π

ω ω
π

ω ω
π

ω

−

−

= + +

= + + + −
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�

�

r φ φ φ

r φ φ

r

(5.223)
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which only depends on the time difference 2 1n n− .

An important property of a stochastic process is that its autocorrelation 1 2[ , ]xxR n n is a

positive-definite function, i.e., for any ,i ja a

[ , ] 0i j xx i j
i j

a a R n n∗ ≥�� (5.224)

which is a consequence of the identity

{ }
2

0 [ ] [ ] [ ]i i i j i j
i i j

E a n a a E n n∗ ∗
� �� �≤ =� �
� �� �
� ��x x x (5.225)

Similarly, the autocovariance of a complex random process is defined as

( )( ){ }1 2 1 1 2 2 1 2 1 2[ , ] [ ] [ ] [ ] [ ] [ , ] [ ] [ ]xx x x xx x xC n n E n n n n R n n n nµ µ µ µ∗ ∗= − − = −x x (5.226)

The correlation coefficient of process [ ]nx is defined as

1 2
1 2

1 1 2 2

[ , ]
[ , ]

[ , ] [ , ]
xx

xx

xx xx

C n n
r n n

C n n C n n
= (5.227)

An important property of the correlation coefficient is that it is bounded by 1:

1 2[ , ] 1xxr n n ≤ (5.228)

which is the Cauchy-Schwarz inequality. To prove it, we note that for any real number a

{ }2

1 1 2 2

2
1 1 1 2 2 2

0 ( [ ] [ ]) ( [ ] [ ])

[ , ] 2 [ , ] [ , ]xx xx xx

E a n n n n

a C n n aC n n C n n

µ µ≤ − + −

= + +

x x
(5.229)

Since the quadratic function in Eq. (5.229) is positive for all a , its roots have to be complex,
and thus its discriminant has to be negative:

2
1 2 1 1 2 2[ , ] [ , ] [ , ] 0xx xx xxC n n C n n C n n− ≤ (5.230)

from which Eq. (5.228) is derived.
The cross-correlation of two stochastic processes [ ]nx and [ ]ny is defined as

{ }1 2 1 2 2 1[ , ] [ ] [ ] [ , ]xy yxR n n E n n R n n∗ ∗= =x y (5.231)

where we have explicitly indicated with subindices the random process. Similarly, their
cross-covariance is
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1 2 1 2 1 2[ , ] [ , ] [ ] [ ]xy xy x yC n n R n n n nµ µ∗= − (5.232)

Two processes [ ]nx and [ ]ny are called orthogonal iff

1 2[ , ] 0xyR n n = for every 1n and 2n (5.233)

They are called uncorrelated iff

1 2[ , ] 0xyC n n = for every 1n and 2n (5.234)

Independent processes. If two processes [ ]nx and [ ]ny are such that the random vari-

ables 1 2[ ], [ ], , [ ]mn n nx x x� , and 1 2[ ], [ ], , [ ]mn n n′ ′ ′y y y� are mutually independent, then these

processes are called independent. If two processes are independent, then they are also uncor-
related, though the converse is not generally true.

Gaussian processes. A process [ ]nx is called Gaussian if the random variables

1 2[ ], [ ], , [ ]mn n nx x x� are jointly Gaussian for any m and 1 2, , , mn n n� . If two processes are

Gaussian and also uncorrelated, then they are also statistically independent.

5.8.2. Stationary Processes

Stationary processes are those whose statistical properties do not change over time. While
truly stationary processes do not exist in speech signals, they are a reasonable approximation
and have the advantage of allowing us to use the Fourier transforms defined in Section
5.1.3.3. In this section we define stationarity and analyze some of its properties.

A stochastic process is called strict-sense stationary (SSS) if its statistical properties
are invariant to a shift of the origin: i.e., both processes [ ]nx and [ ]n l+x have the same

statistics for any l . Likewise, two processes [ ]nx and [ ]ny are called jointly strict-sense

stationary if their joint statistics are the same as those of [ ]n l+x and [ ]n l+y for any l .

From the definition, it follows that the mth-order density of an SSS process must be
such that

1 1 1 1( , , ; , , ) ( , , ; , , )m m m mf x x n n f x x n l n l= + +� � � � (5.235)

for any l . Thus the first-order density satisfies ( , ) ( , )f x n f x n l= + for any l , which means

that it is independent of n:

( , ) ( )f x n f x= (5.236)

or, in other words, the density function is constant with time.
Similarly, 1 2 1 2( , ; , )f x x n l n l+ + is independent of l , which leads to the conclusion

1 2 1 2 1 2( , ; , ) ( , ; )f x x n n f x x m= 1 2m n n= − (5.237)
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or, in other words, the joint density of [ ]nx and [ ]n m+x is not a function of n, only of m,

the time difference between the two samples.
Let’s compute the first two moments of a SSS process:

{ [ ]} [ ] ( [ ]) ( )E x n x n f x n xf x µ= = =� � (5.238)

{ [ ] [ ]} [ ] [ ] ( [ ], [ ]) [ ]xxE x n m x n x n m x n f x n m x n R m∗ ∗+ = + + =� (5.239)

or, in other words, its mean is not a function of time and its autocorrelation depends only on
m.

A stochastic process [ ]nx that obeys Eq. (5.238) and (5.239) is called wide-sense sta-

tionary (WSS). From this definition, a SSS process is also a WSS process but the converse
is not true in general. Gaussian processes are an important exception, and it can be proved
that a WSS Gaussian process is also SSS.

For example, the random process of Eq. (5.213) is WSS, because it has zero mean and
its autocorrelation function, as given by Eq. (5.223), is only a function of 1 2m n n= − . By

setting 0m = in Eq. (5.239) we see that the average power of a WSS stationary process

2
{ [ ] } [0]E x n R= (5.240)

is independent of n.
The autocorrelation of a WSS process is a conjugate-symmetric function, also referred

to as a Hermitian function:

[ ] { [ ] [ ]} { [ ] [ ]} [ ]R m E x n m x n E x n x n m R m∗ ∗ ∗− = − = + = (5.241)

so that if x[n] is real, R[m] is even.
From Eqs. (5.219), (5.238), and (5.239) we can compute the autocovariance as

2
[ ] [ ]C m R m µ= − (5.242)

and its correlation coefficient as

[ ] [ ] / [0]r m C m C= (5.243)

Two processes [ ]nx and [ ]ny are called jointly WSS if both are WSS and their cross-

correlation depends only on 1 2m n n= − :

[ ] { [ ] [ ]}xyR m E x n m y n∗= + (5.244)

[ ] [ ]xy xy x yC m R m µ µ∗= − (5.245)
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5.8.2.1. Ergodic Processes

A critical problem in the theory of stochastic processes is the estimation of their various
statistics, such as the mean and autocorrelation given that often only one realization of the
random process is available. The first approximation would be to replace the expectation in
Eq. (5.218) with its ensemble average:

1

0

1
[ ] [ ]

M

i
i

n x n
M

µ
−

=

≅ � (5.246)

where [ ]ix n are different samples of the random process.

As an example, let [ ]nx be the frequency-modulated (FM) random process received

by a FM radio receiver:

[ ] [ ] [ ]n a n n= +x v (5.247)

which contains some additive noise v[n]. The realization [ ]ix n received by receiver i will be

different from the realization [ ]jx n for receiver j. We know that each signal has a certain

level of noise, so one would hope that by averaging them, we could get the mean of the
process for a sufficiently large number of radio receivers.

In many cases, however, only one sample of the process is available. According to Eq.
(5.246) this would mean that that the sample signal equals the mean, which does not seem
very robust. We could also compute the signal’s time average, but this may not tell us much
about the random process in general. However, for a special type of random processes called
ergodic, their ensemble averages equal appropriate time averages.

A process [ ]nx with constant mean

{ }[ ]E n µ=x (5.248)

is called mean-ergodic if, with probability 1, the ensemble average equals the time average
when N approaches infinity:

lim N
N

µ µ
→∞

= (5.249)

where Nµ is the time average

/ 2 1

/ 2

1
[ ]

N

N
n N

n
N

µ
−

=−

= � x (5.250)

which, combined with Eq. (5.248), indicates that Nµ is a random variable with mean µ .

Taking expectations in Eq. (5.250) and using Eq. (5.248), it is clear that

{ }NE µ µ= (5.251)

so that proving Eq. (5.249) is equivalent to proving
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2lim 0N
N

σ
→∞

= (5.252)

with 2
Nσ being the variance of Nµ . It can be shown [12] that a process [ ]nx is mean ergodic

iff

/ 2 1 / 2 1

2
/ 2 / 2

1
lim [ , ] 0

N N

xx
N

n N m N

C n m
N

− −

→∞ =− =−

=� � (5.253)

It can also be shown [12] that a sufficient condition for a WSS process to be mean ergodic is
to satisfy

lim [ ] 0xx
m

C m
→∞

= (5.254)

which means that if the random variables [ ]nx and [ ]n m+x are uncorrelated for large m,

then process [ ]nx is mean ergodic. This is true for many regular processes.

A similar condition can be proven for a WSS process to be covariance ergodic. In
most cases in this book we assume ergodicity, first because of convenience for mathematical
tractability, and second because it is a good approximation to assume that samples that are
far apart are uncorrelated. Ergodicity allows us to compute means and covariances of ran-
dom processes by their time averages.

5.8.3. LTI Systems with Stochastic Inputs

If the WSS random process [ ]nx is the input to an LTI system with impulse response [ ]h n ,

the output

[ ] [ ] [ ] [ ] [ ]
m m

n h m n m h n m m
∞ ∞

=−∞ =−∞

= − = −� �y x x (5.255)

is another WSS random process. To prove this we need to show that the mean is not a func-
tion of n:

{ } { }[ ] [ ] [ ] [ ] [ ]y x
m m

n E n h m E n m h mµ µ
∞ ∞

=−∞ =−∞

= = − =� �y x (5.256)

The cross-correlation between input and output is given by

{ } { }[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

xy
l

xx xx xx
l l

R m E n m n h l E n m n l

h l R m l h l R m l h m R m

∞
∗

=−∞

∞ ∞
∗ ∗ ∗

=−∞ =−∞

= + ∗ = + ∗ −

= + = − − = − ∗

�

� �

x y x x

(5.257)

and the autocorrelation of the output
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{ } { }[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
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l

xy xy xx
l

R m E n m n h l E n m l n

h l R m l h m R m h m h m R m

∞

=−∞

∞
∗

=−∞

= + ∗ = + − ∗

= − = ∗ = ∗ − ∗

�

�

y y x y

(5.258)

is only a function of m.

5.8.4. Power Spectral Density

The Fourier transform of a WSS random process [ ]nx is a stochastic process in the variable
ω

( ) [ ] j n

n

n e ωω
∞

−

=−∞

= �X x (5.259)

whose autocorrelation is given by

{ } ( )

( )

( ) ( ) [ ] [ ]

{ [ ] [ ]}

j u l j m

l m

j u n jum

n m

E u E l e m e

e E m n m e

ω ω

ω

ω ω
∞ ∞
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∞ ∞
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� �+ = =� �
� �

= +

� �

� �

X X x x

x x

(5.260)

where we made a change of variables l n m= + and changed the order of expectation and
summation. Now, if x[n] is WSS

{ }[ ] [ ] [ ]xxR n E m n m•= +x x (5.261)

and if we set 0u = in Eq. (5.260) together with Eq. (5.261), then we obtain

{ }2
( ) ( ) [ ] j n

xx xx
n

S E R n e ωω ω
∞

−

=−∞

= = �X (5.262)

( )xxS ω is called the power spectral density of the WSS random process [ ]nx , and it is the

Fourier transform of its autocorrelation function [ ]xxR n , with the inversion formula being

1
[ ] ( )

2
j n

xx xxR n S e dωω ω
π

∞

−∞
= � (5.263)

Note that Eqs. (5.48) and (5.263) are identical, though in one case we compute the
autocorrelation of a signal as a time average, and the other is the autocorrelation of a random
process as an ensemble average. For an ergodic process both are the same.
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Just as we take Fourier transforms of deterministic signals, we can also compute the
power spectral density of a random process as long as it is wide-sense stationary, which is
why these wide-sense stationary processes are so useful.

If the random process [ ]nx is real then [ ]xxR n is real and even and, using properties in

Table 5.5, ( )xxS ω is also real and even.

Parseval’s theorem for random processes also applies here:

{ }2 1
[ ] [0] ( )

2xx xxE n R S d
π

π
ω ω

π −
= = �x (5.264)

so that we can compute the signal’s energy from the area under ( )xxS ω . Let’s get a physical

interpretation of ( )xxS ω . In order to do that we can similarly derive the cross-power spec-

trum ( )xyS ω of two WSS random processes [ ]nx and [ ]ny as the Fourier transform of their

cross-correlation:

( ) [ ] j n
xy xy

n

S R n e ωω
∞

−

=−∞

= � (5.265)

which allows us, taking Fourier transforms in Eq. (5.257), to obtain the cross-power spec-
trum between input and output to a linear system as

( ) ( ) ( )xy xxS S Hω ω ω∗= (5.266)

Now, taking the Fourier transform of Eq. (5.258), the power spectrum of the output is
thus given by

2
( ) ( ) ( ) ( ) ( )yy xy xxS S H S Hω ω ω ω ω= = (5.267)

Finally, suppose we filter [ ]nx through the ideal bandpass filter

0 0/
( )

0
b

c c c
H
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(5.268)

The energy of the output process is

{ } 0
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so that taking the limit when 0c → results in

0

0
0

0

1
0 lim ( ) ( )

2

c

xx xxcc
S d S

c

ω

ω
ω ω ω

+

−→
≤ =� (5.270)

which is the Wiener-Khinchin theorem and says that the power spectrum of a WSS process
[ ]nx , real or complex, is always positive for any ω . Equation (5.269) also explains the
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name power spectral density, because ( )xxS ω represents the density of power at any given

frequency ω .

5.8.5. Noise

A process [ ]nx is white noise if, and only if, its samples are uncorrelated:

1 2 1 1 2[ , ] [ ] [ ]xxC n n C n n nδ= − (5.271)

and is zero-mean [ ] 0x nµ = .

If in addition [ ]nx is WSS, then

[ ] [ ] [ ]xx xxC n R n q nδ= = (5.272)

which has a flat power spectral density

( )xxS qω = for all ω (5.273)

The thermal noise phenomenon in metallic resistors can be accurately modeled as
white Gaussian noise. White noise doesn’t have to be Gaussian (white Poisson impulse
noise is one of many other possibilities).

Colored noise is defined as a zero-mean WSS process whose samples are correlated
with autocorrelation [ ]xxR n . Colored noise can be generated by passing white noise through

a filter [ ]h n such that
2

( ) ( )xxS Hω ω= . A type of colored noise that is very frequently en-

countered in speech signals is the so-called pink noise, whose power spectral density decays
with ω . A more in-depth discussion of noise and its effect on speech signals is included in
Chapter 10.

5.9. HISTORICAL PERSPECTIVE AND FURTHER READING

It is impossible to cover the field of Digital Signal Processing in just one chapter. The book
by Oppenheim and Shafer [10] is one of the most widely used as a comprehensive treatment.
For a more in-depth coverage of digital filter design, you can read the book by Parks and
Burrus [13]. A detailed study of the FFT is provided by Burrus and Parks [2]. The theory of
signal processing for analog signals can be found in Oppenheim and Willsky [11]. The the-
ory of random signals can be found in Papoulis [12]. Multirate processing is well studied in
Crochiere and Rabiner [4]. Razavi [16] covers analog-digital conversion. Software pro-
grams, such as MATLAB [1], contain a large number of packaged subroutines. Malvar [7]
has extensive coverage of filterbanks and lapped transforms.

The field of Digital Signal Processing has a long history. The greatest advances in the
field started in the 17th century. In 1666, English mathematician and physicist Sir Isaac
Newton (1642-1727) invented differential and integral calculus, which was independently
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discovered in 1675 by German mathematician Gottfried Wilhelm Leibniz (1646-1716). They
both developed discrete mathematics and numerical methods to solve such equations when
closed-form solutions were not available. In the 18th century, these techniques were further
extended. Swiss brothers Johann (1667-1748) and Jakob Bernoulli (1654-1705) invented the
calculus of variations and polar coordinates. French mathematician Joseph Louis Lagrange
(1736-1813) developed algorithms for numerical integration and interpolation of continuous
functions. The famous Swiss mathematician Leonhard Euler (1707-1783) developed the
theory of complex numbers and number theory so useful in the DSP field, in addition to the
first full analytical treatment of algebra, the theory of equations, trigonometry and analytical
geometry. In 1748, Euler examined the motion of a vibrating string and discovered that si-
nusoids are eigenfunctions for linear systems. Swiss scientist Daniel Bernoulli (1700-1782),
son of Johann Bernoulli, also conjectured in 1753 that all physical motions of a string could
be represented by linear combinations of normal modes. However, both Euler and Bernoulli,
and later Lagrange, discarded the use of trigonometric series because it was impossible to
represent signals with corners. The 19th century brought us the theory of harmonic analysis.
One of those who contributed most to the field of Digital Signal Processing is Jean Baptiste
Joseph Fourier (1768-1830), a French mathematician who in 1822 published The Analytical
Theory of Heat, where he derived a mathematical formulation for the phenomenon of heat
conduction. In this treatise, he also developed the concept of Fourier series and harmonic
analysis and the Fourier transform. One of Fourier’s disciples, the French mathematician
Simeon-Denis Poisson (1781-1840), studied the convergence of Fourier series together with
countryman Augustin Louis Cauchy (1789-1857). Nonetheless, it was German Peter
Dirichlet (1805-1859) who gave the first set of conditions sufficient to guarantee the con-
vergence of a Fourier series. French mathematician Pierre Simon Laplace (1749-1827) in-
vented the Laplace transform, a transform for continuous-time signals over the whole com-
plex plane. French mathematician Marc-Antoine Parseval (1755-1836) derived the theorem
that carries his name. German Leopold Kronecker (1823-1891) did work with discrete delta
functions. French mathematician Charles Hermite (1822-1901) discovered complex conju-
gate matrices. American Josiah Willard Gibbs (1839-1903) studied the phenomenon of Fou-
rier approximations to periodic square waveforms.

Until the early 1950s, all signal processing was analog, including the long-playing
(LP) record first released in 1948. Pulse Code Modulation (PCM) had been invented by Paul
M. Rainey in 1926 and independently by Alan H. Reeves in 1937, but it wasn’t until 1948
when Oliver, Pierce, and Shannon [9] laid the groundwork for PCM (see Chapter 7 for de-
tails). Bell Labs engineers developed a PCM system in 1955, the so-called T-1 carrier sys-
tem, which was put into service in 1962 as the world’s first common-carrier digital commu-
nications system and is still used today. The year 1948 also saw the invention of the transis-
tor at Bell Labs and a small prototype computer at Manchester University and marked the
birth of modern Digital Signal Processing. In 1958, Jack Kilby of Texas Instruments in-
vented the integrated circuit and in 1970, researchers at Lincoln Laboratories developed the
first real-time DSP computer, which performed signal processing tasks about 100 times
faster than general-purpose computers of the time. In 1978, Texas Instruments introduced
Speak & Spell , a toy that included an integrated circuit especially designed for speech
synthesis. Intel Corporation introduced in 1971 the 4-bit Intel 4004, the first general-purpose
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microprocessor chip, and in 1972 they introduced the 8-bit 8008. In 1982 Texas Instruments
introduced the TMS32010, the first commercially viable single-chip Digital Signal Proces-
sor (DSP), a microprocessor specially designed for fast signal processing operations. At a
cost of about $100, the TMS32010 was a 16-bit fixed-point chip with a hardware multiplier
built-in that executed 5 million instructions per second (MIPS). Gordon Moore, Intel’s
founder, came up with the law that carries his name stating that computing power doubles
every 18 months, allowing ever faster processors. By the end of the 20th century, DSP chips
could perform floating-point operations at a rate over 1000MIPS and had a cost below $5, so
that today they are found in many devices from automobiles to cellular phones.

While hardware improvements significantly enabled the development of the field,
digital algorithms were also needed. The 1960s saw the discovery of many of the concepts
described in this chapter. In 1965, James W. Cooley and John W. Tukey [3] discovered the
FFT, although it was later found [6] that German mathematician Carl Friedrich Gauss
(1777-1855) had already invented it over a century earlier. The FFT sped up calculations by
orders of magnitude, which opened up many possible algorithms for the slow computers of
the time. James F. Kaiser, Bernard Gold, and Charles Rader published key papers on digital
filtering. John Stockham and Howard Helms independently discovered fast convolution by
doing convolution with FFTs.

An association that has had a large impact on the development of modern Digital Sig-
nal Processing is the Institute of Electrical and Electronic Engineers (IEEE), which has over
350,000 members in 150 nations and is the world’s largest technical organization. It was
founded in 1884 as the American Institute of Electrical Engineers (AIEE). IEEE’s other par-
ent organization, the Institute of Radio Engineers (IRE), was founded in 1912, and the two
merged in 1963. The IEEE Signal Processing Society is a society within the IEEE devoted
to Signal Processing. Originally founded on 1948 as the Institute of Radio Engineers Profes-
sional Group on Audio, it was later renamed the IEEE Group on Audio (1964), the IEEE
Audio and Electroacoustics group (1965), the IEEE group on Acoustics Speech and Signal
Processing (1974), the Acoustic, Speech and Signal Processing Society (1976), and finally
IEEE Signal Processing Society (1989). In 1976 the society initiated its practice of holding
an annual conference, the International Conference on Acoustic, Speech and Signal Process-
ing (ICASSP), which has been held every year since, and whose proceedings constitute an
invaluable reference. Frederik Nebeker [8] provides a history of the society’s first 50 years
rich in insights from the pioneers.
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C H A P T E R 6

Speech Signal RepresentationsEquation Section 6

This chapter presents several representations
for speech signals useful in speech coding, synthesis and recognition. The central theme is
the decomposition of the speech signal as a source passed through a linear time-varying fil-
ter. This filter can be derived from models of speech production based on the theory of
acoustics where the source represents the air flow at the vocal cords, and the filter represents
the resonances of the vocal tract which change over time. Such a source-filter model is illus-
trated in Figure 6.1. We describe methods to compute both the source or excitation e[n] and
the filter h[n] from the speech signal x[n].

Figure 6.1 Basic source-filter model for speech signals.

To estimate the filter we present methods inspired by speech production models (such
as linear predictive coding and cepstral analysis) as well as speech perception models (such

x[n]e[n] h[n]
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as mel-frequency cepstrum). Once the filter has been estimated, the source can be obtained
by passing the speech signal through the inverse filter. Separation between source and filter
is one of the most difficult challenges in speech processing.

It turns out that phoneme classification (either by human or by machines) is mostly
dependent on the characteristics of the filter. Traditionally, speech recognizers estimate the
filter characteristics and ignore the source. Many speech synthesis techniques use a source-
filter model because it allows flexibility in altering the pitch and the filter. Many speech
coders also use this model because it allows a low bit rate.

We first introduce the spectrogram as a representation of the speech signal that high-
lights several of its properties and describe the short-time Fourier analysis, which is the ba-
sic tool to build the spectrograms of Chapter 2. We then introduce several techniques used to
separate source and filter: LPC and cepstral analysis, perceptually motivated models, for-
mant tracking, and pitch tracking.

6.1. SHORT-TIME FOURIER ANALYSIS

In Chapter 2, we demonstrated how useful spectrograms are to analyze phonemes and their
transitions. A spectrogram of a time signal is a special two-dimensional representation that
displays time in its horizontal axis and frequency in its vertical axis. A gray scale is typically
used to indicate the energy at each point (t, f) with white representing low energy and black
high energy. In this section we cover short-time Fourier analysis, the basic tool with which
to compute them.
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Figure 6.2 (a) Waveform with (b) its corresponding wideband spectrogram. Darker areas
mean higher energy for that time and frequency. Note the vertical lines spaced by pitch peri-
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ods.

The idea behind a spectrogram, such as that in Figure 6.2, is to compute a Fourier
transform every 5 milliseconds or so, displaying the energy at each time/frequency point.
Since some regions of speech signals shorter than, say, 100 milliseconds often appear to be
periodic, we use the techniques discussed in Chapter 5. However, the signal is no longer
periodic when longer segments are analyzed, and therefore the exact definition of Fourier
transform cannot be used. Moreover, that definition requires knowledge of the signal for
infinite time. For both reasons, a new set of techniques called short-time analysis, are pro-
posed. These techniques decompose the speech signal into a series of short segments, re-
ferred to as analysis frames, and analyze each one independently.

In Figure 6.2 (a), note the assumption that the signal can be approximated as periodic
within X and Y is reasonable. In regions (Z, W) and (H, G), the signal is not periodic and
looks like random noise. The signal in (Z, W) appears to have different noisy characteristics
than those of segment (H, G). The use of an analysis frame implies that the region is short
enough for the behavior (periodicity or noise-like appearance) of the signal to be approxi-
mately constant. If the region where speech seems periodic is too long, the pitch period is
not constant and not all the periods in the region are similar. In essence, the speech region
has to be short enough so that the signal is stationary in that region: i.e., the signal character-
istics (whether periodicity or noise-like appearance) are uniform in that region. A more for-
mal definition of stationarity is given in Chapter 5.

Similarly to the filterbanks described in Chapter 5, given a speech signal [ ]x n , we de-

fine the short-time signal [ ]mx n of frame m as

[ ] [ ] [ ]m mx n x n w n= (6.1)

the product of [ ]x n by a window function [ ]mw n , which is zero everywhere except in a

small region.
While the window function can have different values for different frames m, a popular

choice is to keep it constant for all frames:

[ ] [ ]mw n w m n= − (6.2)

where [ ] 0w n = for | | / 2n N> . In practice, the window length is on the order of 20 to 30

ms.
With the above framework, the short-time Fourier representation for frame m is de-

fined as

( ) [ ] [ ] [ ]j j n j n
m m

n n

X e x n e w m n x n eω ω ω
∞ ∞

− −

=−∞ =−∞

= = −� � (6.3)

with all the properties of Fourier transforms studied in Chapter 5.
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Figure 6.3 Short-time spectrum of male voiced speech (vowel /ah/ with local pitch of 110Hz):
(a) time signal, spectra obtained with (b) 30ms rectangular window and (c) 15 ms rectangular
window, (d) 30 ms Hamming window, (e) 15ms Hamming window. The window lobes are not
visible in (e), since the window is shorter than 2 times the pitch period. Note the spectral leak-
age present in (b).

In Figure 6.3 we show the short-time spectrum of voiced speech. Note that there are a
number of peaks in the spectrum. To interpret this, assume the properties of [ ]mx n persist

outside the window, and that, therefore, the signal is periodic with period M in the true
sense. In this case, we know (see Chapter 5) that its spectrum is a sum of impulses

( ) [ ] ( 2 / )j
m m

k

X e X k k Mω δ ω π
∞

=−∞

= −� (6.4)

Given that the Fourier transform of [ ]w n is

( ) [ ]j j n

n

W e w n eω ω
∞

−

=−∞

= � (6.5)

so that the transform of [ ]w m n− is ( )j j mW e eω ω− − . Therefore, using the convolution prop-

erty, the transform of [ ] [ ]x n w m n− for fixed m is the convolution in the frequency domain
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( 2 / ) ( 2 / )( ) [ ] ( )j j k N j k N m
m m

k

X e X k W e eω ω π ω π
∞

− −

=−∞

= � (6.6)

which is a sum of weighted ( )jW e ω , shifted on every harmonic, the narrow peaks seen in

Figure 6.3 (b) with a rectangular window. The short-time spectrum of a periodic signal ex-
hibits peaks (equally spaced 2 / Mπ apart) representing the harmonics of the signal. We

estimate [ ]mX k from the short-time spectrum ( )j
mX e ω , and we see the importance of the

length and choice of window.
Equation (6.6) indicates that one cannot recover [ ]mX k by simply retrieving

( )j
mX e ω , although the approximation can be reasonable if there is a small value of λ such

that

( ) 0jW e ω ≈ for kω ω λ− > (6.7)

which is the case outside the main lobe of the window’s frequency response.
Recall from Section 5.4.2.1 that, for a rectangular window of length N, 2 / Nλ π= .

Therefore, Eq. (6.7) is satisfied if N M≥ , i.e., the rectangular window contains at least one
pitch period. The width of the main lobe of the window’s frequency response is inversely
proportional to the length of the window. The pitch period in Figure 6.3 is M = 71 at a sam-
pling rate of 8 kHz. A shorter window is used in Figure 6.3 (c), which results in wider analy-
sis lobes, though still visible.

Also recall from Section 5.4.2.2 that for a Hamming window of length N, 4 / Nλ π= :
twice as wide as that of the rectangular window, which entails 2N M≥ . Thus, for Eq. (6.7)
to be met, a Hamming window must contain at least two pitch periods. The lobes are visible
in Figure 6.3 (d) since N = 240, but they are not visible in Figure 6.3 (e) since N = 120, and

2N M< .
In practice, one cannot know what the pitch period is ahead of time, which often

means you need to prepare for the lowest pitch period. A low-pitched voice with a

0 50 HzF = requires a rectangular window of at least 20 ms and a Hamming window of at

least 40 ms for the condition in Eq. (6.7) to be met. If speech is non-stationary within 40ms,
taking such a long window implies obtaining an average spectrum during that segment in-
stead of several distinct spectra. For this reason, the rectangular window provides better time
resolution than the Hamming window. Figure 6.4 shows analysis of female speech for which
shorter windows are feasible.

But the frequency response of the window is not completely zero outside its main
lobe, so one needs to see the effects of this incorrect assumption. From Section 5.4.2.1 note
that the second lobe of a rectangular window is only approximately 17 dB below the main
lobe. Therefore, for the kth harmonic the value of 2 /( )j k M

mX e π contains not [ ]mX k , but also

a weighted sum of [ ]mX l . This phenomenon is called spectral leakage because the ampli-

tude of one harmonic leaks over the rest and masks its value. If the signal’s spectrum is
white, spectral leakage does not cause a major problem, since the effect of the second lobe
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on a harmonic is only 17 /10
1010 log (1 10 ) 0.08dB−+ = . On the other hand, if the signal’s spec-

trum decays more quickly in frequency than the decay of the window, the spectral leakage
results in inaccurate estimates.
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Figure 6.4 Short-time spectrum of female voiced speech (vowel /aa/ with local pitch of
200Hz): (a) time signal, spectra obtained with (b) 30 ms rectangular window and (c) 15 ms
rectangular window, (d) 30 ms Hamming window, (e) 15 ms Hamming window. In all cases
the window lobes are visible, since the window is longer than 2 times the pitch period. Note
the spectral leakage present in (b) and (c).

From Section 5.4.2.2, observe that the second lobe of a Hamming window is approxi-
mately 43 dB, which means that the spectral leakage effect is much less pronounced. Other
windows, such as Hanning, or triangular windows, also offer less spectral leakage than the
rectangular window. This important fact is the reason why, despite their better time resolu-
tion, rectangular windows are rarely used for speech analysis. In practice, window lengths
are on the order of 20 to 30 ms. This choice is a compromise between the stationarity as-
sumption and the frequency resolution.

In practice, the Fourier transform in Eq. (6.3) is obtained through an FFT. If the win-
dow has length N, the FFT has to have a length greater than or equal to N. Since FFT algo-
rithms often have lengths that are powers of 2 ( 2RL = ), the windowed signal with length N
is augmented with ( )L N− zeros either before, after, or both. This process is called zero-

padding. A larger value of L provides a finer description of the discrete Fourier transform;
but it does not increase the analysis frequency resolution: this is the sole mission of the win-
dow length N.
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In Figure 6.3, observe the broad peaks, resonances or formants, which represent the
filter characteristics. For voiced sounds there is typically more energy at low frequencies
than at high frequencies, also called roll-off. It is impossible to determine exactly the filter
characteristics, because we know only samples at the harmonics, and we have no knowledge
of the values in between. In fact, the resonances are less obvious in Figure 6.4 because the
harmonics sample the spectral envelope less densely. For high-pitched female speakers and
children, it is even more difficult to locate the formant resonances from the short-time spec-
trum.

Figure 6.5 shows the short-time analysis of unvoiced speech, for which no regularity is
observed.
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Figure 6.5 Short-time spectrum of unvoiced speech. (a) time signal, (b) 30 ms rectangular
window (c) 15 ms rectangular window, (d) 30 ms Hamming window (e) 15 ms Hamming win-
dow.

6.1.1. Spectrograms

Since the spectrogram displays just the energy and not the phase of the short-term Fourier
transform, we compute the energy as

( )2 2 2log | [ ] | log [ ] [ ]r iX k X k X k= + (6.8)
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with this value converted to a gray scale according to Figure 6.6. Pixels whose values have
not been computed are interpolated. The slope controls the contrast of the spectrogram,
while the saturation points for white and black control the dynamic range.

Figure 6.6 Conversion between log-energy values (in the x-axis) and gray scale (in the y-axis).
Larger log-energies correspond to a darker gray color. There is a linear region for which more
log-energy corresponds to darker gray, but there is saturation at both ends. Typically there is
40 to 60 dB between the pure white and the pure black.

There are two main types of spectrograms: narrow-band and wide-band. Wide-band
spectrograms use relatively short windows (< 10 ms) and thus have good time resolution at
the expense of lower frequency resolution, since the corresponding filters have wide band-
widths (> 200 Hz) and the harmonics cannot be seen. Note the vertical stripes in Figure 6.2,
due to the fact that some windows are centered at the high part of a pitch pulse, and others in
between have lower energy. Spectrograms can aid in determining formant frequencies and
fundamental frequency, as well as voiced and unvoiced regions.
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Figure 6.7 Waveform (a) with its corresponding narrowband spectrogram (b). Darker areas
mean higher energy for that time and frequency. The harmonics can be seen as horizontal lines
spaced by fundamental frequency. The corresponding wideband spectrogram can be seen in
Figure 6.2.
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Narrow-band spectrograms use relatively long windows (> 20 ms), which lead to fil-
ters with narrow bandwidth (< 100 Hz). On the other hand, time resolution is lower than for
wide-band spectrograms (see Figure 6.7). Note that the harmonics can be clearly seen, be-
cause some of the filters capture the energy of the signal’s harmonics, and filters in between
have little energy.

Some implementation details also need to be taken into account. Since speech signals
are real, the Fourier transform is Hermitian, and its power spectrum is also even. Thus, it is
only necessary to display values for 0 / 2k N≤ ≤ for N even. In addition, while the tradi-
tional spectrogram uses a gray scale, a color scale can also be used, or even a 3-D represen-
tation. In addition, to make the spectrograms easier to read, sometimes the signal is first pre-
emphasized (typically with a first-order difference FIR filter) to boost the high frequencies
to counter the roll-off of natural speech.

By inspecting both narrow-band and wide-band spectrograms, we can learn the filter’s
magnitude response and whether the source is voiced or not. Nonetheless it is very difficult
to separate source and filter due to nonstationarity of the speech signal, spectral leakage, and
the fact that only the filter’s magnitude response can be known at the signal’s harmonics.

6.1.2. Pitch-Synchronous Analysis

In the previous discussion, we assumed that the window length is fixed, and we saw the
tradeoffs between a window that contained several pitch periods (narrow-band spectro-
grams) and a window that contained less than a pitch period (wide-band spectrograms). One
possibility is to use a rectangular window whose length is exactly one pitch period; this is
called pitch-synchronous analysis. To reduce spectral leakage a tapering window, such as
Hamming or Hanning, can be used, with the window covering exactly two pitch periods.
This latter option provides a very good compromise between time and frequency resolution.
In this representation, no stripes can be seen in either time or frequency. The difficulty in
computing pitch synchronous analysis is that, of course, we need to know the local pitch
period, which, as we see in Section 6.7, is not an easy task.

6.2. ACOUSTICAL MODEL OF SPEECH PRODUCTION

Speech is a sound wave created by vibration that is propagated in the air. Acoustic theory
analyzes the laws of physics that govern the propagation of sound in the vocal tract. Such a
theory should consider three-dimensional wave propagation, the variation of the vocal tract
shape with time, losses due to heat conduction and viscous friction at the vocal tract walls,
softness of the tract walls, radiation of sound at the lips, nasal coupling and excitation of
sound. While a detailed model that considers all of the above is not yet available, some
models provide a good approximation in practice, as well as a good understanding of the
physics involved.
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6.2.1. Glottal Excitation

As discussed in Chapter 2, the vocal cords constrict the path from the lungs to the vocal
tract. This is illustrated in Figure 6.8. As lung pressure is increased, air flows out of the
lungs and through the opening between the vocal cords (glottis). At one point the vocal
cords are together, thereby blocking the airflow, which builds up pressure behind them.
Eventually the pressure reaches a level sufficient to force the vocal cords to open and thus
allow air to flow through the glottis. Then, the pressure in the glottis falls and, if the tension
in the vocal cords is properly adjusted, the reduced pressure allows the cords to come to-
gether, and the cycle is repeated. This condition of sustained oscillation occurs for voiced
sounds. The closed-phase of the oscillation takes place when the glottis is closed and the
volume velocity is zero. The open-phase is characterized by a non-zero volume velocity, in
which the lungs and the vocal tract are coupled.

Figure 6.8 Glottal excitation: volume velocity is zero during the closed-phase, during which
the vocal cords are closed.

Rosenberg’s glottal model [39] defines the shape of the glottal volume velocity with
the open quotient, or duty cycle, as the ratio of pulse duration to pitch period, and the speed
quotient as the ratio of the rising to falling pulse durations.

6.2.2. Lossless Tube Concatenation

A widely used model for speech production is based on the assumption that the vocal tract
can be represented as a concatenation of lossless tubes, as shown in Figure 6.9. The constant
cross-sectional areas { }kA of the tubes approximate the area function A(x) of the vocal tract.

If a large number of tubes of short length are used, we reasonably expect the frequency re-
sponse of the concatenated tubes to be close to those of a tube with continuously varying
area function.

For frequencies corresponding to wavelengths that are long compared to the dimen-
sions of the vocal tract, it is reasonable to assume plane wave propagation along the axis of
the tubes. If in addition we assume that there are no losses due to viscosity or thermal con-
duction, and that the area A does not change over time, the sound waves in the tube satisfy
the following pair of differential equations:

Closed glottis Open glottis
t

u tG ( )
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(6.9)

where ( , )p x t is the sound pressure in the tube at position x and time t, ( , )u x t is the volume

velocity flow in the tube at position x and time t, ρ is the density of air in the tube, c is the

velocity of sound and A is the cross-sectional area of the tube.

Figure 6.9 Approximation of a tube with continuously varying area A(x) as a concatenation of
5 lossless acoustic tubes.

Since Eqs. (6.9) are linear, the pressure and volume velocity in tube kth are related by

( , ) ( / ) ( / )

( , ) ( / ) ( / )

k k k

k k k
k

u x t u t x c u t x c

c
p x t u t x c u t x c

A

ρ

+ −

+ −

= − − +

� �= − + +� �
(6.10)

where ( / )ku t x c+ − and ( / )ku t x c− − are the traveling waves in the positive and negative di-

rections respectively and x is the distance measured from the left-hand end of tube kth:
0 x l≤ ≤ . The reader can prove that this is indeed the solution by substituting Eq. (6.10) into
(6.9).

Figure 6.10 Junction between two lossless tubes.
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When there is a junction between two tubes, as in Figure 6.10, part of the wave is re-
flected at the junction, as measured by kr , the reflection coefficient

1

1

k k
k

k k

A A
r

A A
+

+

−
=

+
(6.11)

so that the larger the difference between the areas the more energy is reflected. The proof [9]
is beyond the scope of this book. Since kA and 1kA + are positive, it is easy to show that kr

satisfies the condition

1 1kr− ≤ ≤ (6.12)

A relationship between the z-transforms of the volume velocity at the glottis [ ]Gu n

and the lips [ ]Lu n for a concatenation of N lossless tubes can be derived [9] using a dis-

crete-time version of Eq. (6.10) and taking into account boundary conditions for every junc-
tion:
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(6.13)

where Gr is the reflection coefficient at the glottis and N Lr r= is the reflection coefficient at

the lips. Equation (6.11) is still valid for the glottis and lips, where 0 / GA c Zρ= is the

equivalent area at the glottis and 1 /N LA c Zρ+ = the equivalent area at the lips. GZ and LZ

are the equivalent impedances at the glottis and lips, respectively. Such impedances relate
the volume velocity and pressure, for the lips the expression is

( ) ( ) /L L LU z P z Z= (6.14)

In general, the concatenation of N lossless tubes results in an N-pole system as shown
in Eq. (6.13). For a concatenation of N tubes, there are at most N/2 complex conjugate poles,
or resonances or formants. These resonances occur when a given frequency gets trapped in
the vocal tract because it is reflected back at the lips and then again back at the glottis.

Since each tube has length l and there are N of them, the total length is L lN= . The
propagation delay in each tube /l cτ = , and the sampling period is 2T τ= , the round trip in
a tube. We can find a relationship between the number of tubes N and the sampling fre-
quency 1/sF T= :

2 sLF
N

c
= (6.15)
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For example, for sF = 8000 kHz, c = 34000 cm/s, and L = 17 cm, the average length

of a male adult vocal tract, we obtain N = 8, or alternatively 4 formants. Experimentally, the
vocal tract transfer function has been observed to have approximately 1 formant per kilo-
hertz. Shorter vocal tract lengths (females or children) have fewer resonances per kilohertz
and vice versa.

The pressure at the lips has been found to approximate the derivative of volume veloc-
ity, particularly at low frequencies. Thus, ( )LZ z can be approximated by

1
0( ) (1 )LZ z R z−≈ − (6.16)

which is 0 for low frequencies and reaches 0R asymptotically. This dependency upon fre-

quency results in a reflection coefficient that is also a function of frequency. For low fre-
quencies, 1Lr = , and no loss occurs. At higher frequencies, loss by radiation translates into

widening of formant bandwidths.
Similarly, the glottal impedance is also a function of frequency in practice. At high

frequencies, GZ is large and 1Gr ≈ so that all the energy is transmitted. For low frequen-

cies, 1Gr < , whose main effect is an increase of bandwidth for the lower formants.
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Figure 6.11 Area function and frequency response for vowel /a/ and its approximation as a
concatenation of 10 lossless tubes. A reflection coefficient at the load of k = 0.72 (dotted line)
is displayed. For comparison, the case of k = 1.0 (solid line) is also shown.
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Moreover, energy is lost as a result of vibration of the tube walls, which is more pro-
nounced at low frequencies. Energy is also lost, to a lesser extent, as a result of viscous fric-
tion between the air and the walls of the tube, particularly at frequencies above 3kHz. The
yielding walls tend to raise the resonance frequencies while the viscous and thermal losses
tend to lower them. The net effect in the transfer function is a broadening of the resonances’
bandwidths.

Despite thermal losses, yielding walls in the vocal tract, and the fact that both Lr and

Gr are functions of frequency, the all-pole model of Eq. (6.13) for V(z) has been found to be

a good approximation in practice [13]. In Figure 6.11 we show the measured area function
of a vowel and its corresponding frequency response obtained using the approximation as a
concatenation of 10 lossless tubes with a constant Lr . The measured formants and corre-

sponding bandwidths match quite well with this model despite all the approximations made.
Thus, this concatenation of lossless tubes model represents reasonably well the acoustics
inside the vocal tract. Inspired by the above results, we describe in Section 6.3 “Linear Pre-
dictive Coding,” an all-pole model for speech.

In the production of the nasal consonants, the velum is lowered to trap the nasal tract
to the pharynx, whereas a complete closure is formed in the oral tract (/m/ at the lips, /n/ just
back of the teeth and /ng/ just forward of the velum itself. This configuration is shown in
Figure 6.12, which shows two branches, one of them completely closed. For nasals, the ra-
diation occurs primarily at the nostrils. The set of resonances is determined by the shape and
length of the three tubes. At certain frequencies, the wave reflected in the closure cancels the
wave at the pharynx, preventing energy from appearing at nostrils. The result is that for na-
sal sounds, the vocal tract transfer function V(z) has anti-resonances (zeros) in addition to
resonances. It has also been observed that nasal resonances have broader bandwidths than
non-nasal voiced sounds, due to the greater viscous friction and thermal loss because of the
large surface area of the nasal cavity.

Figure 6.12 Coupling of the nasal cavity with the oral cavity.

6.2.3. Source-Filter Models of Speech Production

As shown in Chapter 10, speech signals are captured by microphones that respond to
changes in air pressure. Thus, it is of interest to compute the pressure at the lips ( )LP z ,

which can be obtained as

( ) ( ) ( ) ( ) ( ) ( )L L L G LP z U z Z z U z V z Z z= = (6.17)

Closure

Nostrils

Pharynx

Glottis
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For voiced sounds we can model [ ]Gu n as an impulse train convolved with g[n], the

glottal pulse (see Figure 6.13). Since g[n] is of finite length, its z-transform is an all-zero
system.

Figure 6.13 Model of the glottal excitation for voiced sounds.

The complete model for both voiced and unvoiced sounds is shown in Figure 6.14. We
have modeled [ ]Gu n in unvoiced sounds as random noise.

Figure 6.14 General discrete-time model of speech production. The excitation can be either an
impulse train with period T and amplitude vA driving a filter G(z) or random noise with am-

plitude nA .

We can simplify the model in Figure 6.14 by grouping G(z), V(z), and ZL(z) into H(z)
for voiced sounds, and V(z) and ZL(z) into H(z) for unvoiced sounds. The simplified model is
shown in Figure 6.15, where we make explicit the fact that the filter changes over time.

Figure 6.15 Source-filter model for voiced and unvoiced speech.

This model is a decent approximation, but fails on voiced fricatives, since those
sounds contain both a periodic component and an aspirated component. In this case, a mixed
excitation model can be applied, using for voiced sounds a sum of both an impulse train and
colored noise (Figure 6.16).

The model in Figure 6.15 is appealing because the source is white (has a flat spec-
trum) and all the coloring is in the filter. Other source-filter decompositions attempt to
model the source as the signal at the glottis, in which the source is definitely not white.
Since G(z), ZL(z) contain zeros, and V(z) can also contain zeros for nasals, ( )H z is no

z( ) ( )LZ z

G z( )

Av

An

g[n] uG[n]

( )H z s[n]
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longer all-pole. However, recall from in Chapter 5, we state that the z-transform of
[ ] [ ]nx n a u n= is

1
0

1
( )

1
n n

n

X z a z
az

∞
−

−
=

= =
−� for a z< (6.18)

so that by inverting Eq. (6.18) we see that a zero can be expressed with infinite poles. This is
the reason why all-pole models are still reasonable approximations as long as a large enough
number of poles is used. Fant [12] showed that on the average the speech spectrum contains
one pole per kHz. Setting the number of poles p to 2sF + , where sF is the sampling fre-

quency expressed in kHz, has been found to work well in practice.

Figure 6.16 A mixed excitation source-filter model of speech.

6.3. LINEAR PREDICTIVE CODING

A very powerful method for speech analysis is based on linear predictive coding (LPC) [4,
7, 19, 24, 27], also known as LPC analysis or auto-regressive (AR) modeling. This method
is widely used because it is fast and simple, yet an effective way of estimating the main pa-
rameters of speech signals.

As shown in Section 6.2, an all-pole filter with a sufficient number of poles is a good
approximation for speech signals. Thus, we could model the filter H(z) in Figure 6.15 as

1

( ) 1 1
( )

( ) ( )
1

p
k

k
k

X z
H z

E z A z
a z−

=

= = =
−�

(6.19)

where p is the order of the LPC analysis. The inverse filter A(z) is defined as

1

( ) 1
p

k
k

k

A z a z−

=

= −� (6.20)

Taking inverse z-transforms in Eq. (6.19) results in

1

[ ] [ ] [ ]
p

k
k

x n a x n k e n
=

= − +� (6.21)
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Linear predictive coding gets its name from the fact that it predicts the current sample
as a linear combination of its past p samples:

1

[ ] [ ]
p

k
k

x n a x n k
=

= −�� (6.22)

The prediction error when using this approximation is

1

[ ] [ ] [ ] [ ] [ ]
p

k
k

e n x n x n x n a x n k
=

= − = − −�� (6.23)

6.3.1. The Orthogonality Principle

To estimate the predictor coefficients from a set of speech samples, we use the short-term
analysis technique. Let’s define [ ]mx n as a segment of speech selected in the vicinity of

sample m:

[ ] [ ]mx n x m n= + (6.24)

We define the short-term prediction error for that segment as

( )
2

22
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m m m m m j m
n n n j

E e n x n x n x n a x n j
=

� �
= = − = − −� �

� �
� � � �� (6.25)

Figure 6.17 The orthogonality principle. The prediction error is orthogonal to the past sam-
ples.

In the absence of knowledge about the probability distribution of ia , a reasonable es-

timation criterion is minimum mean squared error, introduced in Chapter 4. Thus, given a
signal [ ]mx n , we estimate its corresponding LPC coefficients as those that minimize the

total prediction error mE . Taking the derivative of Eq. (6.25) with respect to ia and equat-

ing to 0, we obtain:

1
mx

2
mx

mx�

em

mx
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, [ ] [ ] 0i
m m m m

n

e n x n i< >= − =�e x 1 i p≤ ≤ (6.26)

where we have defined me and i
mx as vectors of samples, and their inner product has to be

0. This condition, known as orthogonality principle, says that the predictor coefficients that
minimize the prediction error are such that the error must be orthogonal to the past vectors,
and is seen in Figure 6.17.

Equation (6.26) can be expressed as a set of p linear equations

1

[ ] [ ] [ ] [ ]
p

m m j m m
n j n

x n i x n a x n i x n j
=

− = − −� � � 1,2, ,i p= � (6.27)

For convenience, we can define the correlation coefficients as

[ , ] [ ] [ ]m m m
n

i j x n i x n jφ = − −� (6.28)

so that Eqs. (6.27) and (6.28) can be combined to obtain the so-called Yule-Walker equa-
tions:

1

[ , ] [ ,0]
p

j m m
j

a i j iφ φ
=

=� 1,2, ,i p= � (6.29)

Solution of the set of p linear equations results in the p LPC coefficients that minimize
the prediction error. With ia satisfying Eq. (6.29), the total prediction error in Eq. (6.25)

takes on the following value:

2

1 1

[ ] [ ] [ ] [0,0] [0, ]
p p

m m j m m j
n j n j

E x n a x n x n j a jφ φ
= =

= − − = −� � � � (6.30)

It is convenient to define a normalized prediction error u[n] with unity energy

2 [ ] 1m
n

u n =� (6.31)

and a gain G, such that

[ ] [ ]m me n Gu n= (6.32)

The gain G can be computed from the short-term prediction error

2 2 2 2[ ] [ ]m m m
n n

E e n G u n G= = =� � (6.33)
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6.3.2. Solution of the LPC Equations

The solution of the Yule-Walker equations in Eq. (6.29) can be achieved with any standard
matrix inversion package. Because of the special form of the matrix here, some efficient
solutions are possible, as described below. Also, each solution offers a different insight so
we present three different algorithms: the covariance method, the autocorrelation method,
and the lattice method.

6.3.2.1. Covariance Method

The covariance method [4] is derived by defining directly the interval over which the
summation in Eq. (6.28) takes place:

1
2

0

[ ]
N

m m
n

E e n
−

=

=� (6.34)

so that [ , ]m i jφ in Eq. (6.28) becomes
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and Eq. (6.29) becomes
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(6.36)

which can be expressed as the following matrix equation

ψΦ =a (6.37)

where the matrix Φ in Eq. (6.37) is symmetric and positive definite, for which efficient
methods are available, such as the Cholesky decomposition. For this method, also called the
squared root method, the matrix Φ is expressed as

tΦ =VDV (6.38)

where V is a lower triangular matrix (whose main diagonal elements are 1’s), and D is a
diagonal matrix. So each element of Φ can be expressed as

1

[ , ]
j

ik k jk
k

i j V d Vφ
=

=� 1 j i≤ < (6.39)
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or alternatively

1

1

[ , ]
j

ij j ik k jk
k

V d i j V d Vφ
−

=

= −� 1 j i≤ < (6.40)

and for the diagonal elements

1

[ , ]
i

ik k ik
k

i i V d Vφ
=

=� (6.41)

or alternatively

1
2

1

[ , ]
i

i ik k
k

d i i V dφ
−

=

= −� , 2i ≥ (6.42)

with

1 [1,1]d φ= (6.43)

The Cholesky decomposition starts with Eq. (6.43) then alternates between Eqs. (6.40)
and (6.42). Once the matrices V and D have been determined, the LPC coefficients are
solved in a two-step process. The combination of Eqs. (6.37) and (6.38) can be expressed as

ψ=VY (6.44)

with

t=Y DV a (6.45)

or alternatively

1t −=V a D Y (6.46)

Therefore, given matrix V and Eq. (6.44), Y can be solved recursively as

1

1

i

i i ij j
j

Y V Yψ
−

=

= −� , 2 i p≤ ≤ (6.47)

with the initial condition

1 1Y ψ= (6.48)

Having determined Y , Eq. (6.46) can be solved recursively in a similar way

1

/
p

i i i ji j
j i

a Y d V a
= +

= −� , 1 i p≤ < (6.49)

with the initial condition

/p p pa Y d= (6.50)
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where the index i in Eq. (6.49) proceeds backwards.
The term covariance analysis is somewhat of a misnomer, since we know from Chap-

ter 5 that the covariance of a signal is the correlation of that signal with its mean removed. It
was so called because the matrix in Eq. (6.36) has the properties of a covariance matrix,
though this algorithm is more like a cross-correlation.

6.3.2.2. Autocorrelation Method

The summation in Eq. (6.28) had no specific range. In the autocorrelation method [24, 27],
we assume that [ ]mx n is 0 outside the interval 0 n N≤ < :

[ ] [ ] [ ]mx n x m n w n= + (6.51)

with [ ]w n being a window (such as a Hamming window) which is 0 outside the interval

0 n N≤ < . With this assumption, the corresponding prediction error [ ]me n is non-zero over

the interval 0 n N p≤ < + , and, therefore, the total prediction error takes on the value

1
2
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[ ]
N p

m m
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E e n
+ −

=

= � (6.52)

With this range, Eq. (6.28) can be expressed as
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or alternatively

[ , ] [ ]m mi j R i jφ = − (6.54)

with [ ]mR k being the autocorrelation sequence of [ ]mx n :

1

0

[ ] [ ] [ ]
N k

m m m
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R k x n x n k
− −

=

= +� (6.55)

Combining Eqs. (6.54) and (6.29), we obtain

1

[| |] [ ]
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j m m
j

a R i j R i
=

− =� (6.56)

which corresponds to the following matrix equation
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(6.57)

The matrix in Eq. (6.57) is symmetric and all the elements in its diagonals are identical.
Such matrices are called Toeplitz. Durbin’s recursion exploits this fact resulting in a very
efficient algorithm (for convenience, we omit the subscript m of the autocorrelation func-
tion), whose proof is beyond the scope of this book:
1. Initialization

0 [0]E R= (6.58)

2. Iteration. For 1, ,i p= � do the following recursion:

1
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i
i ia k= (6.60)

1 1i i i
j j i i ja a k a− −

−= − , 1 j i≤ < (6.61)

2 1(1 )i i
iE k E −= − (6.62)

3. Final solution:

p
j ja a= 1 j p≤ ≤ (6.63)

where the coefficients ik , called reflection coefficients, are bounded between –1 and 1 (see

Section 6.3.2.3). In the process of computing the predictor coefficients of order p, the recur-
sion finds the solution of the predictor coefficients for all orders less than p.

Replacing [ ]R j by the normalized autocorrelation coefficients [ ]r j , defined as

[ ] [ ] / [0]r j R j R= (6.64)

results in identical LPC coefficients, and the recursion is more robust to problems with
arithmetic precision. Likewise, the normalized prediction error at iteration i is defined by
dividing Eq. (6.30) by R[0], which, using Eq. (6.54), results in

1

1 [ ]
[0]

i i
i

j
j

E
V a r j

R =

= = −� (6.65)



Linear Predictive Coding 295

The normalized prediction error is, using Eqs. (6.62) and (6.65),

2

1

(1 )
p

p
i

i

V k
=

= −∏ (6.66)

6.3.2.3. Lattice Formulation

In this section we derive the lattice formulation [7, 19], an equivalent algorithm to the Lev-
inson Durbin recursion, which has some precision benefits. It is advantageous to define the
forward prediction error obtained at stage i of the Levinson Durbin procedure as

1

[ ] [ ] [ ]
i

i i
k

k

e n x n a x n k
=

= − −� (6.67)

whose z-transform is given by

( ) ( ) ( )i iE z A z X z= (6.68)

with ( )iA z being defined by

1

( ) 1
i

i i k
k

k

A z a z−

=

= −� (6.69)

which, combined with Eq. (6.61), results in the following recursion:

1 1 1( ) ( ) ( )i i i i
iA z A z k z A z− − − −= − (6.70)

Similarly, we can define the so-called backward prediction error as

1

[ ] [ ] [ ]
i

i i
k

k

b n x n i a x n k i
=

= − − + −� (6.71)

whose z-transform is

1( ) ( ) ( )i i iB z z A z X z− −= (6.72)

Now combining Eqs. (6.68), (6.70), and (6.72), we obtain

1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )i i i i i i
i iE z A z X z k z A z X z E z k B z− − − − − −= − = − (6.73)

whose inverse z-transform is given by

1 1[ ] [ ] [ 1]i i i
ie n e n k b n− −= − − (6.74)

Also, substituting Eqs. (6.70) into (6.72) and using Eq. (6.68), we obtain

1 1 1( ) ( ) ( )i i i
iB z z B z k E z− − −= − (6.75)
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whose inverse z-transform is given by

1 1[ ] [ 1] [ ]i i i
ib n b n k e n− −= − − (6.76)

Equations (6.74) and (6.76) define the forward and backward prediction error sequences for
an ith-order predictor in terms of the corresponding forward and backward prediction errors
of an (i - 1)th-order predictor. We initialize the recursive algorithm by noting that the 0th-
order predictor is equivalent to using no predictor at all; thus

0 0[ ] [ ] [ ]e n b n x n= = (6.77)

and the final prediction error is [ ] [ ]pe n e n= .

A block diagram of the lattice method is given in Figure 6.18, which resembles a lat-
tice, whence its name.

Figure 6.18 Block diagram of the lattice filter.

While the computation of the ik coefficients can be done through the Levinson Durbin

recursion of Eqs. (6.59) through (6.62), it can be shown that an equivalent calculation can be
found as a function of the forward and backward prediction errors. To do so we minimize
the sum of the forward prediction errors

( )
1 2

0

[ ]
N

i i

n

E e n
−

=

=� (6.78)

by substituting Eq. (6.74) in (6.78), taking the derivative with respect to ik , and equating to

0:

( )

1
1 1

0
1 21

0

[ ] [ 1]

[ 1]

N
i i

n
i N

i

n

e n b n
k

b n

−
− −

=
−

−

=

−
=

−

�

�

(6.79)

Using Eqs. (6.67) and (6.71), it can be shown that

x[n]

z-1
+

+
e0[n]

b0[n]

-k1

-k1

z-1
+

+
e1[n]

b1[n]
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z-1
+

+
ep-1[n]

bp-1[n]

-kp

-kp

ep[n]
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( ) ( )
1 12 21 1

0 0

[ ] [ 1]
N N

i i

n n

e n b n
− −

− −

= =

= −� � (6.80)

since minimization of both yields identical Yule-Walker equations. Thus Eq. (6.79) can be
alternatively expressed as

( ) ( )

1
1 1

1 1
0

1 11 12 21 1

0 0

[ ] [ 1]
,

[ ] [ 1]

N
i i

i i
n

i i iN N
i i

n n

e n b n
k

e n b n

−
− −

− −
=

− −− −
− −

= =

−
< >= =

−

�

� �

e b

e b
(6.81)

where we have defined the vectors ( )[0] [ 1]i i ie e N= −e � and ( )[0] [ 1]i i ib b N= −b � . The

inner product of two vectors x and y is defined as

1

0

, [ ] [ ]
N

n

x n y n
−

=

< >=�x y (6.82)

and its norm as

1
2 2

0

, [ ]
N

n

x n
−

=

=< >=�x x x (6.83)

Equation (6.81) has the form of a normalized cross-correlation function, and, there-
fore, the reason the reflection coefficients are also called partial correlation coefficients
(PARCOR). As with any normalized cross-correlation function, the ik coefficients are

bounded by

1 1ik− ≤ ≤ (6.84)

This is a necessary and sufficient condition for all the roots of the polynomial ( )A z to

be inside the unit circle, therefore guaranteeing a stable filter. This condition can be checked
to avoid numerical imprecision by stopping the recursion if the condition is not met. The
inverse lattice filter can be seen in Figure 6.19, which resembles the lossless tube model.
This is why the ik are also called reflection coefficients.

Figure 6.19 Inverse lattice filter used to generate the speech signal, given its residual.
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Lattice filters are often used in fixed-point implementation, because lack of precision
doesn’t result in unstable filters. Any error that may take place – for example due to quanti-
zation – is generally not be sufficient to cause ik to fall outside the range in Eq. (6.84). If,

owing to round-off error, the reflection coefficient falls outside the range, the lattice filter
can be ended at the previous step.

More importantly, linearly varying coefficients can be implemented in this fashion.
While, typically, the reflection coefficients are constant during the analysis frame, we can
implement a linear interpolation of the reflection coefficients to obtain the error signal. If the
coefficients of both frames are in the range in Eq. (6.84), the linearly interpolated reflection
coefficients also have that property, and thus the filter is stable. This is a property that the
predictor coefficients don’t have.

6.3.3. Spectral Analysis via LPC

Let’s now analyze the frequency-domain behavior of the LPC analysis by evaluating

1

( )
( )

1

j
p j

j k
k

k

G G
H e

A e
a e

ω
ω

ω−

=

= =
−�

(6.85)

which is an all-pole or IIR filter. If we plot ( )jH e ω , we expect to see peaks at the roots of

the denominator. Figure 6.20 shows the 14-order LPC spectrum of the vowel of Figure 6.3
(d).
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Figure 6.20 LPC spectrum of the /ah/ phoneme in the word lifes of Figure 6.3. Used here are a
30-ms Hamming window and the autocorrelation method with p = 14. The short-time spectrum
is also shown.

For the autocorrelation method, the squared error of Eq. (6.52) can be expressed, using
Eq. (6.85) and Parseval’s theorem, as
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22

2

| ( ) |

2 | ( ) |

j
m

m j

X eG
E d

H e

ωπ

ωπ
ω

π −
= � (6.86)

Since the integrand in Eq. (6.86) is positive, minimizing mE is equivalent to minimizing the

ratio of the energy spectrum of the speech segment 2| ( ) |j
mX e ω to the magnitude squared of

the frequency response of the linear system 2| ( ) |jH e ω . The LPC spectrum matches more

closely the peaks than the valleys (see Figure 6.20), because the regions where
| ( ) | | ( ) |j j

mX e H eω ω> contribute more to the error than those where | ( ) | | ( ) |j j
mH e X eω ω> .

Even nasals, which have zeros in addition to poles, can be represented with an infinite
number of poles. In practice, if p is large enough we can approximate the signal spectrum
with arbitrarily small error. Figure 6.21 shows different fits for different values of p. The
higher p, the more details of the spectrum are preserved.
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Figure 6.21 LPC spectra of Figure 6.20 for various values of the predictor order p.

The prediction order is not known for arbitrary speech, so we need to set it to balance
spectral detail with estimation errors.

6.3.4. The Prediction Error

So far, we have concentrated on the filter component of the source-filter model. Using Eq.
(6.23), we can compute the prediction error signal, also called the excitation, or residual
signal. For unvoiced speech synthetically generated by white noise following an LPC filter
we expect the residual to be approximately white noise. In practice, this approximation is
quite good, and replacement of the residual by white noise followed by the LPC filter typi-
cally results in no audible difference. For voiced speech synthetically generated by an im-
pulse train following an LPC filter, we expect the residual to approximate an impulse train.
In practice, this is not the case, because the all-pole assumption is not altogether valid; thus,
the residual, although it contains spikes, is far from an impulse train. Replacing the residual
by an impulse train, followed by the LPC filter, results in speech that sounds somewhat ro-
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botic, partly because real speech is not perfectly periodic (it has a random component as
well), and because the zeroes are not modeled with the LPC filter. Residual signals com-
puted from inverse LPC filters for several vowels are shown in Figure 6.22.
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Figure 6.22 LPC prediction error signals for several vowels.

How do we choose p? This is an important design question. Larger values of p lead to
lower prediction errors (see Figure 6.23). Unvoiced speech has higher error than voiced
speech, because the LPC model is more accurate for voiced speech. In general, the normal-
ized error rapidly decreases, and then converges to a value of around 12 - 14 for 8 kHz
speech. If we use a large value of p, we are fitting the individual harmonics; thus the LPC
filter is modeling the source, and the separation between source and filter is not going to be
so good. The more coefficients we have to estimate, the larger the variance of their esti-
mates, since the number of available samples is the same. A rule of thumb is to use 1 com-
plex pole per kHz plus 2 - 4 poles to model the radiation and glottal effects.

For unvoiced speech, both the autocorrelation and the covariance methods provide
similar results. For voiced speech, however, the covariance method can provide better esti-
mates if the analysis window is shorter than the local pitch period and the window only in-
cludes samples from the closed phase (when the vocal tract is closed at the glottis and
speech signal is due mainly to free resonances). This is called pitch synchronous analysis
and results in lower prediction error, because the true excitation is close to zero during the
whole analysis window. During the open phase, the trachea, the vocal folds, and the vocal
tract are acoustically coupled, and this coupling will change the free resonances. Addition-
ally, the prediction error is higher for both the autocorrelation and the covariance methods if
samples from the open phase are included in the analysis window, because the prediction
during those instants is poor.
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Figure 6.23 Variation of the normalized prediction error with the number of prediction coeffi-
cients p for the voiced segment of Figure 6.3 and the unvoiced speech of Figure 6.5. The auto-
correlation method was used with a 30 ms Hamming window, and a sampling rate of 8 kHz.

6.3.5. Equivalent Representations

There are a number of alternate useful representations of the predictor coefficients. The most
important are the line spectrum pairs, reflection coefficients, log-area ratios, and the roots of
the predictor polynomial.

6.3.5.1. Line Spectral Frequencies

Line Spectral Frequencies (LSF) [18] provide an equivalent representation of the predictor
coefficients that is very popular in speech coding. It is derived from computing the roots of
the polynomials P(z) and Q(z) defined as

( 1) 1( ) ( ) ( )pP z A z z A z− + −= + (6.87)

( 1) 1( ) ( ) ( )pQ z A z z A z− + −= − (6.88)

To gain insight on these roots, look at a second-order predictor filter with a pair of
complex roots:

1 2 1 2 2
1 2 0 0 0( ) 1 1 2 cos(2 )A z a z a z f z zρ π ρ− − − −= − − = − + (6.89)

where 00 1ρ< < and 00 0.5f< < . Inserting Eq. (6.89) into (6.87) and (6.88) results in

1 2 3
1 2 1 2

1 2 3
1 2 1 2

( ) 1 ( ) ( )

( ) 1 ( ) ( )

P z a a z a a z z

Q z a a z a a z z

− − −

− − −

= − + − + +

= − − + − −
(6.90)

From Eq. (6.90) we see that 1z = − is a root of P(z) and 1z = a root of Q(z), which can be
divided out and results in
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1 1 2
1

1 1 2
2

( ) (1 )(1 2 )

( ) (1 )(1 2 )

P z z z z

Q z z z z

β
β

− − −

− − −

= + − +

= − − +
(6.91)

where 1β and 2β are given by

2
01 2

1 0 0

2
01 2

2 0 0

11
cos(2 )

2 2
11

cos(2 )
2 2

a a
f

a a
f

ρβ ρ π

ρβ ρ π

−+ += = +

−− −= = −
(6.92)

It can be shown that 1 1β < and 2 1β < for all possible values of 0f and 0ρ . With

this property, the roots of P(z) and Q(z) in Eq. (6.91) are complex and given by
2

1 11jβ β± − and 2
2 21jβ β± − , respectively. Because they lie in the unit circle, they can

be uniquely represented by their angles

2
0

1 0 0

2
0

2 0 0

1
cos(2 ) cos(2 )

2
1

cos(2 ) cos(2 )
2

f f

f f

ρπ ρ π

ρπ ρ π

−
= +

−= −
(6.93)

where 1f and 2f are the line spectral frequencies of A(z). Since 0 1ρ < ,

2 0cos(2 ) cos(2 )f fπ π< , and thus 2 0f f> . It’s also the case that 1 0cos(2 ) cos(2 )f fπ π>
and thus 1 0f f< . Furthermore, as 0 1ρ → , we see from Eq. (6.93) that 1 0f f→ and

2 0f f→ . We conclude that, given a pole at 0f , the two line spectral frequencies bracket it,

i.e., 1 0 2f f f< < , and that they are closer together as the pole of the second-order resonator

gets closer to the unit circle.
We have proven that for a second-order predictor, the roots of P(z) and Q(z) lie in the

unit circle, that 1± are roots, and that, once sorted, the roots of P(z) and Q(z) alternate. Al-
though we do not prove it here, it can be shown that these conclusions hold for other predic-
tor orders, and, therefore, the p predictor coefficients can be transformed into p line spectral
frequencies. We also know that 1z = is always a root of Q(z), whereas 1z = − is a root of
P(z) for even p and a root of Q(z) for odd p.

To compute the LSF for 2p > , we replace cos( )z ω= and compute the roots of

( )P ω and ( )Q ω by any available root finding method. A popular technique, given that

there are p roots which are real in ω and bounded between 0 and 0.5, is to bracket them by
observing changes in sign of both functions in a dense grid. To compute the predictor coef-
ficients from the LSF coefficients we can factor P(z) and Q(z) as a product of second-order
filters as in Eq. (6.91), and then ( )( ) ( ) ( ) / 2A z P z Q z= + .

In practice, LSF are useful because of sensitivity (a quantization of one coefficient
generally results in a spectral change only around that frequency) and efficiency (LSF result
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in low spectral distortion). This doesn’t occur with other representations. As long as the LSF
coefficients are ordered, the resulting LPC filter is stable, though the proof is beyond the
scope of this book. LSF coefficients are used extensively in Chapter 7.

6.3.5.2. Reflection Coefficients

For the autocorrelation method, the predictor coefficients may be obtained from the reflec-
tion coefficients by the following recursion:

1 1

1, ,

1

i
i i

i i i
j j i i j

a k i p

a a k a j i− −
−

= =

= − ≤ <

�

(6.94)

where p
i ia a= . Similarly, the reflection coefficients may be obtained from the prediction

coefficients using a backward recursion of the form

1
2

, ,1

1
1

i
i i

i i i
j i i ji

j
i

k a i p

a a a
a j i

k
−−

= =

+
= ≤ <

−

�

(6.95)

where we initialize p
i ia a= .

Reflection coefficients are useful when implementing LPC filters whose values are in-
terpolated over time, because, unlike the predictor coefficients, they are guaranteed to be
stable at all times as long as the anchors satisfy Eq. (6.84).

6.3.5.3. Log-Area Ratios

The log-area ratio coefficients are defined as

1
ln

1
i

i
i

k
g

k

� �−= � �+� �
(6.96)

with the inverse being given by

1

1

i

i

g

i g

e
k

e

−=
+

(6.97)

The log-area ratio coefficients are equal to the natural logarithm of the ratio of the ar-
eas of adjacent sections of a lossless tube equivalent of the vocal tract having the same trans-
fer function. Since for stable predictor filters 1 1ik− < < , we have from Eq. (6.96) that

ig−∞ < < ∞ . For speech signals, it is not uncommon to have some reflection coefficients

close to 1, and quantization of those values can cause a large change in the predictor’s trans-
fer function. On the other hand, the log-area ratio coefficients have relatively flat spectral
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sensitivity (i.e., a small change in their values causes a small change in the transfer function)
and thus are useful in coding.

6.3.5.4. Roots of Polynomial

An alternative to the predictor coefficients results from computing the complex roots of the
predictor polynomial:

1

1 1

( ) 1 (1 )
pp

k
k k

k k

A z a z z z− −

= =

= − = −� ∏ (6.98)

These roots can be represented as

( 2 ) /k k sb j f F
kz e π π− += (6.99)

where kb , kf , and sF represent the bandwidth, center frequency, and sampling frequency,

respectively. Since ka are real, all complex roots occur in conjugate pairs so that if ( , )k kb f

is a root, so is ( , )k kb f− . The bandwidths kb are always positive, because the roots are in-

side the unit circle ( 1kz < ) for a stable predictor. Real roots /k sb F
kz e π−= can also occur.

While algorithms exist to compute the complex roots of a polynomial, in practice there are
sometimes numerical difficulties in doing so.

If the roots are available, it is straightforward to compute the predictor coefficients by
using Eq. (6.98). Since the roots of the predictor polynomial represent resonance frequencies
and bandwidths, they are used in formant synthesizers of Chapter 16.

6.4. CEPSTRAL PROCESSING

A homomorphic transformation ( )ˆ[ ] [ ]x n D x n= is a transformation that converts a convolu-

tion

[ ] [ ] [ ]x n e n h n= ∗ (6.100)

into a sum

ˆˆ ˆ[ ] [ ] [ ]x n e n h n= + (6.101)

In this section we introduce the cepstrum as one homomorphic transformation [32]
that allows us to separate the source from the filter. We show that we can find a value N

such that the cepstrum of the filter ˆ[ ] 0h n ≈ for n N≥ , and that the cepstrum of the excita-

tion ˆ[ ] 0e n ≈ for n N< . With this assumption, we can approximately recover both [ ]e n

and [ ]h n from ˆ[ ]x n by homomorphic filtering. In Figure 6.24, we show how to recover

[ ]h n with a homomorphic filter:
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1
[ ]

0

n N
l n

n N

� <�= � ≥��
(6.102)

where D is the cepstrum operator.

Figure 6.24 Homomorphic filtering to recover the filter’s response from a periodic signal. We
have used the homomorphic filter of Eq. (6.102).

The excitation signal can similarly recovered with a homomorphic filter given by

1
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n N
l n

n N

� ≥�= � <��
(6.103)

6.4.1. The Real and Complex Cepstrum

The real cepstrum of a digital signal [ ]x n is defined as

1
[ ] ln | ( ) |

2
j j nc n X e e d

π ω ω

π
ω

π −
= � (6.104)

and the complex cepstrum of [ ]x n is defined as

1
ˆ[ ] ln ( )

2
j j nx n X e e d

π ω ω

π
ω

π −
= � (6.105)

where the complex logarithm is used:

ˆ ( ) ln ( ) ln | ( ) | ( )j j jX e X e X e jω ω ω θ ω= = + (6.106)

and the phase ( )θ ω is given by

( ) arg ( )jX e ωθ ω � �= � � (6.107)

You can see from Eqs. (6.104) and (6.105) that both the real and the complex cep-
strum satisfy Eq. (6.101) and thus they are homomorphic transformations.

If the signal [ ]x n is real, both the real cepstrum [ ]c n and the complex cepstrum ˆ[ ]x n

are also real signals. Therefore the term complex cepstrum doesn’t mean that it is a complex
signal but rather that the complex logarithm is taken.

x D[ ]
[ ]s n [ ]x n

w n[ ]

ˆ[ ]x n
x

l n[ ]

D-1[ ]

�[ ]h n h n[ ]
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It can easily be shown that [ ]c n is the even part of ˆ[ ]x n :

ˆ ˆ[ ] [ ]
[ ]

2

x n x n
c n

+ −= (6.108)

From here on, when we refer to cepstrum without qualifiers, we are referring to the
real cepstrum, since it is the most widely used in speech technology.

The cepstrum was invented by Bogert et al. [6], and its term was coined by reversing
the first syllable of the word spectrum, given that it is obtained by taking the inverse Fourier
transform of the log-spectrum. Similarly, they defined the term quefrency to represent the
independent variable n in c[n]. The quefrency has dimension of time.

6.4.2. Cepstrum of Pole-Zero Filters

A very general type of filters are those with rational transfer functions
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(6.109)

with the magnitudes of ka , kb , ku and kv all less than 1. Therefore, 1(1 )ka z−− and
1(1 )kb z−− represent the zeros and poles inside the unit circle, whereas (1 )ku z− and

(1 )kv z− represent the zeros and poles outside the unit circle, and rz is a shift from the time

origin. Thus, the complex logarithm is
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(6.110)

where the term log[ ]rz contributes to the imaginary part of the complex cepstrum only with

a term j rω . Since it just carries information about the time origin, it’s typically ignored.

We use the Taylor series expansion

1

ln(1 )
n

n

x
x

n

∞

=

− = −� (6.111)

in Eq. (6.110) and take inverse z-transforms to obtain
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If the filter’s impulse response doesn’t have zeros or poles outside the unit circle, the

so-called minimum phase signals, then ˆ[ ] 0h n = for 0n < . Maximum phase signals are those

with ˆ[ ] 0h n = for 0n > . If a signal is minimum phase, its complex cepstrum can be

uniquely determined from its real cepstrum:

0 0
ˆ[ ] [ ] 0

2 [ ] 0

n

h n c n n
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�= =�
� >�

(6.113)

It is easy to see from Eq. (6.112) that both the real and complex cepstrum are decaying
sequences, which is the reason why, typically, a finite number of coefficients are sufficient
to approximate it, and, therefore, people refer to the truncated cepstrum signal as a cepstrum
vector.

6.4.2.1. LPC-Cepstrum

The case when the rational transfer function in Eq. (6.109) has been obtained with an LPC
analysis is particularly interesting, since LPC analysis is such a widely used method. While
Eq. (6.112) applies here, too, it is useful to find a recursion which doesn’t require us to com-
pute the roots of the predictor polynomial. Given the LPC filter
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we take the logarithm

1

ˆˆ ( ) ln ln 1 [ ]
p

l k
l

l k

H z G a z h k z
∞

− −

= =−∞

� �
= − − =� �

� �
� � (6.115)

and the derivative of both sides with respect to z



308 Speech Signal Representations

1

11

1

ˆ[ ]

1

p
n

n
kn

p
kl

l
l

na z
kh k z

a z

− −
∞

− −=

=−∞−

=

−
= −

−

�
�

�

(6.116)

Multiplying both sides by
1

1
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which, after replacing l n k= − , and equating terms in 1z− , results in
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so that the complex cepstrum can be obtained from the LPC coefficients by the following
recursion:
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where the value for 0n = can be obtained from Eqs. (6.115) and (6.111). We note that,
while there are a finite number of LPC coefficients, the number of cepstrum coefficients is
infinite. Speech recognition researchers have shown empirically that a finite number is suffi-
cient: 12 - 20 depending on the sampling rate and whether or not frequency warping is done.
In Chapter 8 we discuss the use of the cepstrum in speech recognition.

This recursion should not be used in the reverse mode to compute the LPC coefficients
from any set of cepstrum coefficients, because the recursion in Eq. (6.119) assumes an all-
pole model with all poles inside the unit circle, and that might not be the case for an arbi-
trary cepstrum sequence, so that the recursion might yield a set of unstable LPC coefficients.
In some experiments it has been shown that quantized LPC-cepstrum can yield unstable
LPC coefficients over 5% of the time.
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6.4.3. Cepstrum of Periodic Signals

It is important to see what the cepstrum of periodic signals looks like. To do so, let’s con-
sider the following signal:

1
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k
k

x n n kNα δ
−

=

= −� (6.120)

which can be viewed as an impulse train of period N multiplied by an analysis window, so
that only M impulses remain. Its z-transform is

1
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=� (6.121)

which is a polynomial in Nz− rather than 1z− . Therefore, ( )X z can be expressed as a prod-

uct of factors of the form (1 )Nk
ka z−− and (1 )Nk

ku z− . Following the derivation in Section

6.4.2, it is clear that its complex cepstrum is nonzero only at integer multiples of N:
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A particularly interesting case is when k
kα α= with 0 1α< < , so that Eq. (6.121)

can be expressed as

1 1 ( )
( ) 1 ( )

1

N M
N N M

N

z
X z z z

z

αα α
α

−
− − −

−

−= + + + =
−

� (6.123)

so that taking the logarithm of Eq. (6.123) and expanding it in Taylor series using Eq.
(6.111) results in
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which lets us compute the complex cepstrum as
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An infinite impulse train can be obtained by making 1α → and M →∞ in Eq.
(6.125):
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We see from Eq. (6.126) that the cepstrum of an impulse train goes to 0 as n increases.
This justifies our assumption of homomorphic filtering.
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6.4.4. Cepstrum of Speech Signals

We can compute the cepstrum of a speech segment by windowing the signal with a window
of length N. In practice, the cepstrum is not computed through Eq. (6.112), since root-
finding algorithms are slow and offer numerical imprecision for the large values of N used.
Instead, we can compute the cepstrum directly through its definition of Eq. (6.105), using
the DFT as follows:
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ˆ [ ] ln [ ]a aX k X k= , 0 k N≤ < (6.128)
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The subscript a means that the new complex cepstrum ˆ [ ]ax n is an aliased version of ˆ[ ]x n

given by

ˆ ˆ[ ] [ ]a
r

x n x n rN
∞

=−∞

= +� (6.130)

which can be derived by using the sampling theorem of Chapter 5, by reversing the concepts
of time and frequency.

This aliasing introduces errors in the estimation that can be reduced by choosing a
large value for N.

Computation of the complex cepstrum requires computing the complex logarithm and,
in turn, the phase. However, given the principal value of the phase [ ]p kθ , there are infinite

possible values for [ ]kθ :

[ ] [ ] 2p kk k nθ θ π= + (6.131)

From Chapter 5 we know that if [ ]x n is real, arg ( )jX e ω� �� � is an odd function and also con-

tinuous. Thus we can do phase unwrapping by choosing kn to guarantee that [ ]kθ is a

smooth function, i.e., by forcing the difference between adjacent values to be small:

[ ] [ 1]k kθ θ π− − < (6.132)

A linear phase term r as in Eq. (6.110), would contribute to the phase difference in Eq.
(6.132) with 2 /r Nπ , which may result in errors in the phase unwrapping if [ ]kθ is chang-

ing sufficiently rapidly. In addition, there could be large changes in the phase difference if
[ ]aX k is noisy. To guarantee that we can track small phase differences, a value of N several
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times larger than the window size is required: i.e., the input signal has to be zero-padded
prior to the FFT computation. Finally, the delay r in Eq. (6.109), can be obtained by forcing
the phase to be an odd function, so that:

[ / 2]N rθ π= (6.133)

For unvoiced speech, the unwrapped phase is random, and therefore only the real cep-
strum has meaning. In practical situations, even voiced speech has some frequencies at
which noise dominates (typically very low and high frequencies), which results in phase

[ ]kθ that changes drastically from frame to frame. Because of this, the complex cepstrum in

Eq. (6.105) is rarely used for real speech signals. Instead, the real cepstrum is used much
more often:

[ ] ln [ ]a aC k X k= , 0 k N≤ < (6.134)
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Similarly, it can be shown that for the new real cepstrum [ ]ac n is an aliased version of

[ ]c n given by

[ ] [ ]a
r

c n c n rN
∞

=−∞

= +� (6.136)

which again has aliasing that can be reduced by choosing a large value for N.

6.4.5. Source-Filter Separation via the Cepstrum

We have seen that, if the filter is a rational transfer function, and the source is an impulse
train, the homomorphic filtering of Figure 6.24 can approximately separate them. Because of
problems in estimating the phase in speech signals (see Section 6.4.4), we generally com-
pute the real cepstrum using Eqs. (6.127), (6.134) and (6.135), and then compute the com-
plex cepstrum under the assumption of a minimum phase signal according to Eq. (6.113).
The result of separating source and filter using this cepstral deconvolution is shown in
Figure 6.25 for voiced speech and Figure 6.26 for unvoiced speech.

The real cepstrum of white noise [ ]x n with an expected magnitude spectrum

| ( ) | 1jX e ω = is 0. If colored noise is present, the cepstrum of the observed colored noise

ˆ[ ]y n is identical to the cepstrum of the coloring filter ˆ[ ]h n , except for a gain factor. The

above is correct if we take an infinite number of noise samples, but in practice, this cannot
be done and a limited number have to be used, so that this is only an approximation, though
it is often used in speech processing algorithms.
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Figure 6.25 Separation of source and filter using homomorphic filtering for voiced speech
with the scheme of Figure 6.24 with N = 20 in the homomorphic filter of Eq. (6.102) with the
real cepstrum: (a) windowed signal, (b) log-spectrum, (c) filter’s impulse response, (d)
smoothed log-spectrum, (e) windowed excitation signal, (f) log-spectrum of high-part of cep-
strum. Note that the windowed excitation is not a windowed impulse train because of the
minimum phase assumption.
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Figure 6.26 Separation of source and filter using homomorphic filtering for unvoiced speech
with the scheme of Figure 6.24 with N = 20 in the homomorphic filter of Eq. (6.102) with the
real cepstrum: (a) windowed signal, (b) log-spectrum, (c) filter’s impulse response, (d)
smoothed log-spectrum.
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6.5. PERCEPTUALLY-MOTIVATED REPRESENTATIONS

In this section we describe some aspects of human perception, and methods motivated by the
behavior of the human auditory system: Mel-Frequency Cepstrum Coefficients (MFCC) and
Perceptual Linear Prediction (PLP). These methods have been successfully used in speech
recognition. First we present several nonlinear frequency scales that have been used in such
representations.

6.5.1. The Bilinear Transform

The transformation

1

11

z
s

z

α
α

−

−

−=
−

(6.137)

for 0 1α< < belongs to the class of bilinear transforms. It is a mapping in the complex
plane that maps the unit circle onto itself. The frequency transformation is obtained by mak-
ing the substitution jz e ω= and js e Ω= :

sin( )
2arctan

1 cos( )

α ωω
α ω

� �
Ω = + � �−� �

(6.138)

This transformation is very similar to the Bark and mel scale for an appropriate choice
of the parameter α (see Chapter 2). Oppenheim [31] showed that the advantage of this
transformation is that it can be used to transform a time sequence in the linear frequency into
another time sequence in the warped frequency, as shown in Figure 6.27. This bilinear trans-
form has been successfully applied to cepstral and autocorrelation coefficients.

Figure 6.27 Implementation of the frequency-warped cepstral coefficients as a function of the
linear-frequency cepstrum coefficients. Both sets of coefficients are causal. The input is the
time-reversed cepstrum sequence, and the output can be obtained by sampling the outputs of
the filters at time n = 0. The filters used for w[m] m > 2 are the same. Note that, for a finite-
length cepstrum, an infinite-length warped cepstrum results.
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For a finite number of cepstral coefficients the bilinear transform in Figure 6.27 results
in an infinite number of warped cepstral coefficients. Since truncation is usually done in
practice, the bilinear transform is equivalent to a matrix multiplication, where the matrix is a
function of the warping parameter α . Shikano [43] showed these warped cepstral coeffi-
cients were beneficial for speech recognition.

6.5.2. Mel-Frequency Cepstrum

The Mel-Frequency Cepstrum Coefficients (MFCC) is a representation defined as the real
cepstrum of a windowed short-time signal derived from the FFT of that signal. The differ-
ence from the real cepstrum is that a nonlinear frequency scale is used, which approximates
the behavior of the auditory system. Davis and Mermelstein [8] showed the MFCC represen-
tation to be beneficial for speech recognition.

Given the DFT of the input signal
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=
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we define a filterbank with M filters ( 1,2, ,m M= � ), where filter m is triangular filter given
by:
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Such filters compute the average spectrum around each center frequency with increasing
bandwidths, and they are displayed in Figure 6.28.

Figure 6.28 Triangular filters used in the computation of the mel-cepstrum using Eq. (6.140).

Alternatively, the filters can be chosen as

…

1[ ]H k 3[ ]H k 4[ ]H k 5[ ]H k 6[ ]H k2[ ]H k

f[0] f[1] f[2] f[3] f[4] f[5] f[6] f[7]

k



Perceptually-Motivated Representations 315

( )
( )
( )

( )

'

0 [ 1]

[ 1]
[ 1] [ ]

[ ] [ 1]
[ ]

[ 1]
[ ] [ 1]

[ 1] [ ]

0 [ 1]

m

k f m

k f m
f m k f m

f m f m
H k

f m k
f m k f m

f m f m

k f m

< −�
� − −� − ≤ ≤
� − −�= �

+ −� ≤ ≤ +� + −
�
� > +�

(6.141)

which satisfies
1
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[ ] 1
M

m
m

H k
−

=

=� . The mel-cepstrum computed with [ ]mH k or ' [ ]mH k will dif-

fer by a constant vector for all inputs, so the choice becomes unimportant when used in a
speech recognition system that has trained with the same filters.

Let’s define lf and hf to be the lowest and highest frequencies of the filterbank in

Hz, Fs the sampling frequency in Hz, M the number of filters, and N the size of the FFT. The
boundary points f[m] are uniformly spaced in the mel-scale:
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where the mel-scale B is given by Eq. (2.6), and B-1 is its inverse

( )1( ) 700 exp( /1125) 1B b b− = − (6.143)

We then compute the log-energy at the output of each filter as
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The mel frequency cepstrum is then the discrete cosine transform of the M filter out-
puts:
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where M varies for different implementations from 24 to 40. For speech recognition, typi-
cally only the first 13 cepstrum coefficients are used. It is important to note that the MFCC
representation is no longer a homomorphic transformation. It would be if the order of sum-
mation and logarithms in Eq. (6.144) were reversed:
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=� 0 m M≤ < (6.146)

In practice, however, the MFCC representation is approximately homomorphic for fil-
ters that have a smooth transfer function. The advantage of the MFCC representation using
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(6.144) instead of (6.146) is that the filter energies are more robust to noise and spectral es-
timation errors. This algorithm has been used extensively as a feature vector for speech rec-
ognition systems.

While the definition of cepstrum in Section 6.4.1 uses an inverse DFT, since S[m] is
even, a DCT-II can be used instead (see Chapter 5).

6.5.3. Perceptual Linear Prediction (PLP)

Perceptual Linear Prediction (PLP) [16] uses the standard Durbin recursion of Section
6.3.2.2 to compute LPC coefficients, and typically the LPC coefficients are transformed to
LPC-cepstrum using the recursion in Section 6.4.2.1. But unlike standard linear prediction,
the autocorrelation coefficients are not computed in the time domain through Eq. (6.55).

The autocorrelation [ ]xR n is the inverse Fourier transform of the power spectrum
2

( )X ω of the signal. We cannot compute the continuous-frequency Fourier transform eas-

ily, but we can take an FFT to compute X[k], so that the autocorrelation can be obtained as

the inverse Fourier transform of
2

[ ]X k . Since the discrete Fourier transform is not per-

forming linear convolution but circular convolution, we need to make sure that the FFT size
is larger than twice the window length (see Section 5.3.4) for this to hold. This alternate way
of computing autocorrelation coefficients, entailing two FFTs and N multiplies and adds,
should yield identical results. Since normally only a small number p of autocorrelation coef-
ficients are needed, this is generally not a cost-effective way to do it, unless the first FFT has
to be computed for other reasons.

Perceptual linear prediction uses the above method, but replaces
2

[ ]X k by a percep-

tually motivated power spectrum. The most important aspect is the non-linear frequency
scaling, which can be achieved through a set of filterbanks similar to those described in Sec-
tion 6.5.2, so that this critical-band power spectrum can be sampled in approximately 1-bark
intervals. Another difference is that, instead of taking the logarithm on the filterbank energy
outputs, a different non-linearity compression is used, often the cubic root. It is reported [16]
that the use of this different non-linearity is beneficial for speech recognizers in noisy condi-
tions.

6.6. FORMANT FREQUENCIES

Formant frequencies are the resonances in the vocal tract and, as we saw in Chapter 2, they
convey the differences between different sounds. Expert spectrogram readers are able to
recognize speech by looking at a spectrogram, particularly at the formants. It has been ar-
gued that they are very useful features for speech recognition, but they haven’t been widely
used because of the difficulty in estimating them.

One way of obtaining formant candidates at a frame level is to compute the roots of a
pth-order LPC polynomial [3, 26]. There are standard algorithms to compute the complex
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roots of a polynomial with real coefficients [36], though convergence is not guaranteed.
Each complex root zi can be represented as

z b j fi i i� � �exp( )� �2 (6.147)

where fi and bi are the formant frequency and bandwidth, respectively, of the ith root. Real
roots are discarded and complex roots are sorted by increasing f, discarding negative values.
The remaining pairs ( fi ,bi ) are the formant candidates. Traditional formant trackers discard
roots whose bandwidths are higher than a threshold [46], say 200 Hz.

Closed-phase analysis of voiced speech [5] uses only the regions for which the glottis
is closed and thus there is no excitation. When the glottis is open, there is a coupling of the
vocal tract with the lungs and the resonance bandwidths are somewhat larger. Determination
of the closed-phase regions directly from the speech signal is difficult, so often an elec-
troglottograph (EGG) signal is used [23]. EGG signals, obtained by placing electrodes at the
speaker’s throat, are very accurate in determining the times when the glottis is closed. Using
samples in the closed-phase covariance analysis can yield accurate results [46]. For female
speech, the closed-phase is short, and sometimes non-existent, so such analysis can be a
challenge. EGG signals are useful also for pitch tracking and are described in more detail in
Chapter 16.

Another common method consists of finding the peaks on a smoothed spectrum, such
as that obtained through an LPC analysis [26, 40]. The advantage of this method is that you
can always compute the peaks and it is more computationally efficient than extracting the
complex roots of a polynomial. On the other hand, this procedure generally doesn’t estimate
the formant’s bandwidth. The first three formants are typically estimated this way for for-
mant synthesis (see Chapter 16), since they are the ones that allow sound classification,
whereas the higher formants are more speaker dependent.

Sometimes, the signal goes through some conditioning, which includes sampling rate
conversion to remove frequencies outside the range we are interested in. For example, if we
are interested only in the first three formants, we can safely downsample the input signal to
8 kHz, since we know all three formants should be below 4 kHz. This downsampling re-
duces computation and the chances of the algorithm to find formant values outside the ex-
pected range (otherwise peaks or roots could be chosen above 4 kHz which we know do not
correspond to any of the first three formants). Pre-emphasis filtering is also often used to
whiten the signal.

Because of the thresholds imposed above, it is possible that the formants are not con-
tinuous. For example, when the vocal tract’s spectral envelope is changing rapidly, band-
widths obtained through the above methods are overestimates of the true bandwidths, and
they may exceed the threshold and thus be rejected. It is also possible for the peak-picking
algorithm to classify a harmonic as a formant during some regions where it is much stronger
than the other harmonics. Due to the thresholds used, a given frame could have no formants,
only one formant (either first, second, or third), two, three, or more. Formant alignment from
one frame to another has often been done using heuristics to prevent such discontinuities.
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6.6.1. Statistical Formant Tracking

It is desirable to have an approach that does not use any thresholds on formant candidates
and uses a probabilistic model to do the tracking instead of heuristics [1]. The formant can-
didates can be obtained from roots of the LPC polynomial, peaks in the smoothed spectrum
or even from a dense sample of possible points. If the first n formants are desired, and we
have (p/2) formant candidates, a maximum of r n-tuples are considered, where r is given by

r
p

n
�

F
HG
I
KJ

/ 2
(6.148)

A Viterbi search (see Chapter 8) is then carried out to find the most likely path of for-
mant n-tuples given a model with some a priori knowledge of formants. The prior distribu-
tion for formant targets is used to determine which formant candidate to use of all possible
choices for the given phoneme (i.e., we know that F1 for an AE should be around 800 Hz).
Formant continuity is imposed through the prior distribution of the formant slopes. This al-
gorithm produces n formants for every frame, including silence.

Since we are interested in obtaining the first three formants (n=3) and F3 is known to
be lower than 4 kHz, it is advantageous to downsample the signal to 8 kHz in order to avoid
obtaining formant candidates above 4 kHz and to let us use a lower-order analysis which
offers fewer numerical problems when computing the roots. With p = 14, it results in a
maximum of r = 35 triplets for the case of no real roots.

Let X be a sequence of T feature vectors tx of dimension n:

X x x x� �( , , , )1 2 � T (6.149)

where the prime denotes transpose.
We estimate the formants with the knowledge of what sound occurs at that particular

time, for example by using a speech recognizer that segments the waveform into different
phonemes (see Chapter 9) or states tq within a phoneme. In this case we assume that the

output distribution of each state i is modeled by one Gaussian density function with a mean
� i and covariance matrix � i . We can define up to N states, with λ being the set of all means
and covariance matrices for all:

� � � �� ( , , , , , , )1 1 2 2� � �� N N (6.150)

Therefore, the log-likelihood for X is given by

( ) 1

1 1

1 1ˆln ( | , ) ln 2 ln | | ( ) ( )
2 2 2t t t t

T T

q t q q t q
t t

TM
p λ π µ µ−

= =

′= − − Σ − − Σ −� �X q x x (6.151)

Maximizing X in Eq. (6.151) leads to the trivial solution � ( , , , )X � �� � �q q qT1 2
� , a

piecewise function whose value is that of the best n-tuple candidate. This function has dis-
continuities at state boundaries and thus is not likely to represent well the physical phenom-
ena of speech.
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This problem arises because the slopes at state boundaries do not match the slopes of
natural speech. To avoid these discontinuities, we would like to match not only the target
formants at each state, but also the formant slopes at each state. To do that, we augment the
feature vector xt at frame t with the delta vector x xt t�

�1. Thus, we increase the parameter

space of λ with the corresponding means � i and covariance matrices �i of these delta pa-
rameters, and assume statistical independence among them. The corresponding new log-
likelihood has the form

1 2

1 1
1 1
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Figure 6.29 Spectrogram and three smoothed formants.

Maximization of Eq. (6.152) with respect to xt requires solving several sets of linear
equations. If �i and � i are diagonal covariance matrices, it results in a set of linear equations
for each of the M dimensions

BX c� (6.153)

where B is a tridiagonal matrix (all values are zero except for those in the main diagonal and
its two adjacent diagonals), which leads to a very efficient solution [36]. For example, the
values of B and c for T = 3 are given by
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B �

� �

� � � �

� �

F

H

GGGGGGG

I

K

JJJJJJJ

1 1 1
0

1 1 1 1 1

0
1 1 1

1 2 2

2 2 2 3 3

3 3 3

2 2 2

2 2 2 2 2

2 2 2

� � �

� � � � �

� � �

q q q

q q q q q

q q q

(6.154)

c � � � � �
F
HG

I
KJ
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

q

q

q

q

q

q

q

q

q

q

q

q

q

q

1

1

2

2

2

2

2

2

3

3

3

3

3

3

2 2 2 2 2 2 2
(6.155)

where just one dimension is represented, and the process is repeated for all dimensions with
a computational complexity of O(TM).
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Figure 6.30 Raw formants (ragged gray line) and smoothed formants (dashed line).

The maximum likelihood sequence �xt is close to the targets � i while keeping the
slopes close to � i for a given state i, thus estimating a continuous function. Because of the
delta coefficients, the solution depends on all the parameters of all states and not just the
current state. This procedure can be performed for the formants as well as the bandwidths.
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The parameters � i , � i , � i , and �i can be re-estimated using the EM algorithm de-
scribed in Chapter 8. In [1] it is reported that two or three iterations are sufficient for
speaker-dependent data.

The formant track obtained through this method can be rough, and it may be desired to
smooth it. Smoothing without knowledge about the speech signal would result in either blur-
ring the sharp transitions that occur in natural speech, or maintaining ragged formant tracks
where the underlying physical phenomena vary slowly with time. Ideally we would like a
larger adjustment to the raw formant when the error in the estimate is large relative to the
variance of the corresponding state within a phoneme. This can be done by modeling the
formant measurement error as a Gaussian distribution. Figure 6.29 shows an utterance from
a male speaker with the smoothed formant tracks, and Figure 6.30 compares the raw and
smoothed formants. When no real formant is visible from the spectrogram, the algorithm
tends to assign a large bandwidth (not shown in the figure).

6.7. THE ROLE OF PITCH

Pitch determination is very important for many speech processing algorithms. The concate-
native speech synthesis methods of Chapter 16 require pitch tracking on the desired speech
segments if prosody modification is to be done. Chinese speech recognition systems use
pitch tracking for tone recognition, which is important in disambiguating the myriad of
homophones. Pitch is also crucial for prosodic variation in text-to-speech systems (see
Chapter 15) and spoken language systems (see Chapter 17). While in the previous sections
we have dealt with features representing the filter, pitch represents the source of the model
illustrated in Figure 6.1.

Pitch determination algorithms also use short-term analysis techniques, which means
that for every frame mx we get a score ( | )mf T x that is a function of the candidate pitch

periods T. These algorithms determine the optimal pitch by maximizing

arg max ( | )m m
T

T f T= x (6.156)

We describe several such functions computed through the autocorrelation method and
the normalized cross-correlation method, as well as the signal conditioning that is often per-
formed. Other approaches based on cepstrum [28] have also been used successfully. a good
summary of techniques used for pitch tracking is provided by [17, 45].

Pitch determination using Eq. (6.156) is error prone, and a smoothing stage is often
done. This smoothing, described in Section 6.7.4, takes into consideration that the pitch does
not change quickly over time.

6.7.1. Autocorrelation Method

A commonly used method to estimate pitch is based on detecting the highest value of the
autocorrelation function in the region of interest. This region must exclude 0m = , as that is
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the absolute maximum of the autocorrelation function [37]. As discussed in Chapter 5, the
statistical autocorrelation of a sinusoidal random process

0[ ] cos( )n nω ϕ= +x (6.157)

is given by

0

1
[ ] { [ ] [ ]} cos( )

2
R m E n n m mω∗= + =x x (6.158)

which has maxima for 0m lT= , the pitch period and its harmonics, so that we can find the

pitch period by computing the highest value of the autocorrelation. Similarly, it can be
shown that any WSS periodic process x[n] with period 0T also has an autocorrelation R[m]

which exhibits its maxima at 0m lT= .

In practice, we need to obtain an estimate ˆ[ ]R m from knowledge of only N samples. If

we use a window w[n] of length N on x[n] and assume it to be real, the empirical autocorre-
lation function is given by

1 | |
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N m
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N

− −

=

= + +� x x (6.159)

whose expected value can be shown to be

{ } ( )ˆ[ ] [ ] [ ] [ ]E R m R m w m w m= ∗ − (6.160)

where
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which, for the case of a rectangular window of length N, is given by
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(6.162)

which means that ˆ[ ]R m is a biased estimator of R[m]. So, if we compute the peaks based on

Eq. (6.159), the estimate of the pitch will also be biased. Although the variance of the esti-
mate is difficult to compute, it is easy to see that as m approaches N, fewer and fewer sam-
ples of x[n] are involved in the calculation, and thus the variance of the estimate is expected
to increase. If we multiply Eq. (6.159) by /( )N N m− , the estimate will be unbiased but the

variance will be larger.
Using the empirical autocorrelation in Eq. (6.159) for the random process in Eq.

(6.157) results in an expected value of
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{ } 0cos( )| |ˆ[ ] 1 ,
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E R m m N
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(6.163)

whose maximum coincides with the pitch period for 0m m> .

Since pitch periods can be as low as 40 Hz (for a very low-pitched male voice) or as
high as 600 Hz (for a very high-pitched female or child’s voice), the search for the maxi-
mum is conducted within a region. This F0 detection algorithm is illustrated in Figure 6.31
where the lag with highest autocorrelation is plotted for every frame. In order to see perio-
dicity present in the autocorrelation, we need to use a window that contains at least two pitch
periods, which, if we want to detect a 40Hz pitch, implies 50ms (see Figure 6.32). For win-
dow lengths so long, the assumption of stationarity starts to fail, because a pitch period at
the beginning of the window can be significantly different than at the end of the window.
One possible solution to this problem is to estimate the autocorrelation function with differ-
ent window lengths for different lags m.
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Figure 6.31 Waveform and unsmoothed pitch track with the autocorrelation method. A frame
shift of 10 ms, a Hamming window of 30 ms, and a sampling rate of 8kHz were used. Notice
that two frames in the voiced region have an incorrect pitch. The pitch values in the unvoiced
regions are essentially random.

The candidate pitch periods in Eq. (6.156) can be simply mT m= ; i.e., the pitch period

is any integer number of samples. For low values of mT , the frequency resolution is lower

than for high values. To maintain a relatively constant frequency resolution, we do not have
to search all the pitch periods for large mT . Alternatively, if the sampling frequency is not

high, we may need to use fractional pitch periods (often done in the speech coding algo-
rithms of Chapter 7)

The autocorrelation function can be efficiently computed by taking a signal, window-
ing it, and taking an FFT and then the square of the magnitude.
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Figure 6.32 Autocorrelation function for frame 40 in Figure 6.31. The maximum occurs at 89
samples. A sampling frequency of 8 kHz and window shift of 10ms are used. The top figure is
using a window length of 30 ms, whereas the bottom one is using 50 ms. Notice the quasi-
periodicity in the autocorrelation function.

6.7.2. Normalized Cross-Correlation Method

A method that is free from these border problems and has been gaining in popularity is
based on the normalized cross-correlation [2]

,
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t
t t T

Tα θ −
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= =
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x x
(6.164)

where { [ / 2], [ / 2 1], , [ / 2 1]}t x t N x t N x t N= − − + + −x � is a vector of N samples centered

at time t, and ,t t T−< >x x is the inner product between the two vectors defined as
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so that, using Eq. (6.165), the normalized cross-correlation can be expressed as
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where we see that the numerator in Eq. (6.166) is very similar to the autocorrelation in Sec-
tion 6.7.1, but where N terms are used in the addition for all values of T.

The maximum of the normalized cross-correlation method is shown in Figure 6.33 (b).
Unlike the autocorrelation method, the estimate of the normalized cross-correlation is not
biased by the term (1 / )m N− . For perfectly periodic signals, this results in identical values

of the normalized cross-correlation function for kT. This can result in pitch halving, where
2T can be chosen as the pitch period, which happens in Figure 6.33 (b) at the beginning of
the utterance. Using a decaying bias (1 / )m M− with M N� , can be useful in reducing

pitch halving, as we see in Figure 6.33 (c).
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Figure 6.33 (a) Waveform and (b) (c) unsmoothed pitch tracks with the normalized cross-
correlation method. A frame shift of 10 ms, window length of 10 ms, and sampling rate of 8
kHz were used. (b) is the standard normalized cross-correlation method, whereas (c) has a de-
caying term. If we compare it to the autocorrelation method of Figure 6.31, the middle voiced
region is correctly identified in both (b) and (c), but two frames at the beginning of (b) that
have pitch halving are eliminated with the decaying term. Again, the pitch values in the un-
voiced regions are essentially random.

Because the number of samples involved in the calculation is constant, this estimate is
unbiased and has lower variance than that of the autocorrelation. Unlike the autocorrelation
method, the window length could be lower than the pitch period, so that the assumption of
stationarity is more accurate and it has more time resolution. While pitch trackers based on
the normalized cross-correlation typically perform better than those based on the autocorre-
lation, they also require more computation, since all the autocorrelation lags can be effi-
ciently computed through 2 FFTs and N multiplies and adds (see Section 5.3.4).

Let’s gain some insight about the normalized cross-correlation. If x[n] is periodic with
period T, then we can predict it from a vector T samples in the past as:
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t t T tρ −= +x x e (6.167)

where ρ is the prediction gain. The normalized cross-correlation measures the angle between
the two vectors, as can be seen in Figure 6.34, and since it is a cosine, it has the property that

1 ( ) 1n Pα− ≤ ≤ .

Figure 6.34 The prediction of tx with t T−x results in an error te .

If we choose the value of the prediction gain ρ so as to minimize the prediction error

2 2 2 2 22 2cos ( ) ( )t t t t t t Tθ α= − = −e x x x x (6.168)

and assume te is a zero-mean Gaussian random vector with a standard deviation | |tσ x ,

then
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so that the maximum likelihood estimate corresponds to finding the value T with highest
normalized cross-correlation. Using Eq. (6.166), it is possible that ( ) 0t Tα < . In this case,

there is negative correlation between tx and t T−x , and it is unlikely that T is a good choice

for pitch. Thus, we need to force 0ρ > , so that Eq. (6.169) is converted into
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The normalized cross-correlation of Eq. (6.164) predicts the current frame with a
frame that occurs T samples before. Voiced speech may exhibit low correlation with a pre-
vious frame at a spectral discontinuity, such as those appearing at stops. To account for this,
an enhancement can be done to consider not only the backward normalized cross-
correlation, but also the forward normalized cross-correlation, by looking at a frame that
occurs T samples ahead of the current frame, and taking the highest of both.
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6.7.3. Signal Conditioning

Noise in the signal tends to make pitch estimation less accurate. To reduce this effect, signal
conditioning or pre-processing has been proposed prior to pitch estimation [44]. Typically
this involves bandpass filtering to remove frequencies above 1 or 2 kHz, and below 100 Hz
or so. High frequencies do not have much voicing information and have significant noise
energy, whereas low frequencies can have 50/60 Hz interference from power lines or non-
linearities from some A/D subsystems that can also mislead a pitch estimation algorithm.

In addition to the noise in the very low frequencies and aspiration at high bands, the
stationarity assumption is not so valid at high frequencies. Even a slowly changing pitch,
say, nominal 100 Hz increasing 5 Hz in 10 ms, results in a fast-changing harmonic: the 30th

harmonic at 3000 Hz changes 150 Hz in 10 ms. The corresponding short-time spectrum no
longer shows peaks at those frequencies.

Because of this, it is advantageous to filter out such frequencies prior to the computa-
tion of the autocorrelation or normalized cross-correlation. If an FFT is used to compute the
autocorrelation, this filter is easily done by setting to 0 the undesired frequency bins.

6.7.4. Pitch Tracking

Pitch tracking using the above methods typically fails in several cases:

� Sub-harmonic errors. If a signal is periodic with period T, it is also periodic
with period 2T, 3T, etc. Thus, we expect the scores to be also high for the multi-
ples of T, which can mislead the algorithm. Because the signal is never perfectly
stationary, those multiples, or sub-harmonics, tend to have slightly lower scores
than the fundamental. If the pitch is identified as 2T, pitch halving is said to oc-
cur.

� Harmonic errors. If harmonic M dominates the signal’s total energy, the score at
pitch period T/M will be large. This can happen if the harmonic falls in a for-
mant frequency that boosts its amplitude considerably compared to that of the
other harmonics. If the pitch is identified as T/2, pitch doubling is said to occur.

� Noisy conditions. When the SNR is low, pitch estimates are quite unreliable for
most methods.

� Vocal fry. While pitch is generally continuous, for some speakers it can sud-
denly change and even halve, particularly at the end of an unstressed voiced re-
gion. The pitch here is really not well defined and imposing smoothness con-
straints can hurt the system.

� F0 jumps up or down by an octave occasionally.

� Breathy voiced speech is difficult to distinguish from periodic background noise.

� Narrow-band filtering of unvoiced excitations by certain vocal tract configura-
tions can lead to signals that appear periodic.
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For these reasons, pitch trackers do not determine the pitch value at frame m based ex-
clusively on the signal at that frame. For a frame where there are several pitch candidates
with similar scores, the fact that pitch does not change abruptly with time is beneficial in
disambiguation, because possibly the following frame has a clearer pitch candidate, which
can help.

To integrate the normalized cross-correlation into a probabilistic framework, you can
combine tracking with the use of a priori information [10]. Let’s define

},,,{ 110 −= MxxxX � as a sequence of input vectors for M consecutive frames centered at

equally spaced time instants, say 10 ms. Furthermore, if we assume that the ix are inde-

pendent of each other, the joint distribution takes on the form:
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where 0 1 1{ , , , }MT T T −=T � is the pitch track for the input. The maximum a posteriori (MAP)

estimate of the pitch track is:
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according to Bayes’ rule, with the term ( | )f X T being given by Eq. (6.172) and ( | )i if Tx
by Eq. (6.169), for example.

The function ( )f T constitutes the a priori statistics for the pitch and can help disam-

biguate the pitch, by avoiding pitch doubling or halving given knowledge of the speaker’s
average pitch, and by avoiding rapid transitions given a model of how pitch changes over
time. One possible approximation is given by assuming that the a priori probability of the
pitch period at frame i depends only on the pitch period for the previous frame:

0 1 1 1 2 2 3 1 0 0( ) ( , , , ) ( | ) ( | ) ( | ) ( )M M M M Mf f T T T f T T f T T f T T f T− − − − −= =T � � (6.174)

One possible choice for 1( | )t tf T T − is to decompose it into a component that depends

on tT and another that depends on the difference 1( )t tT T −− . If we approximate both as

Gaussian densities, we obtain
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so that when Eqs. (6.170) and (6.175) are combined, the log-probability of transitioning to

iT at time t from pitch jT at time t - 1 is given by
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so that the log-likelihood in Eq. (6.173) can be expressed as

( )
1

1
2

0 0
1

ln ( ) ( | ) max(0, ( )) max ( , )
t t

t

M

t i i
i

t

f f T S T Tα
−

−

=

= + �T X T (6.177)

which can be maximized through dynamic programming. For a region where pitch is not
supposed to change, 0δ = , the term 2( )i jT T− in Eq. (6.176) acts as a penalty that keeps the

pitch track from jumping around. A mixture of Gaussians can be used instead to model dif-
ferent rates of pitch change, as in the case of Mandarin Chinese with four tones character-

ized by different slopes. The term ( )2

iT µ− attempts to get the pitch close to its expected

value to avoid pitch doubling or halving, with the average µ being different for male and
female speakers. Pruning can be done during the search without loss of accuracy (see Chap-
ter 12).

Pitch trackers also have to determine whether a region of speech is voiced or un-
voiced. A good approach is to build a statistical classifier with techniques described in
Chapter 8 based on energy and the normalized cross-correlation described above. Such clas-
sifiers, i.e., an HMM, penalize jumps between voiced and unvoiced frames to avoid voiced
regions having isolated unvoiced frame inside and vice versa. A threshold can be used on
the a posteriori probability to distinguish voiced from unvoiced frames.

6.8. HISTORICAL PERSPECTIVE AND FUTURE READING

In 1978, Lawrence R. Rabiner and Ronald W. Schafer [38] wrote a book summarizing the
work to date on digital processing of speech, which remains a good source for the reader
interested in further reading in the field. The book by Deller, Hansen and Proakis [9] in-
cludes more recent work and is also an excellent reference. O’Shaughnessy [33] also has a
thorough description of the subject. Malvar [25] covers filterbanks and lapped transforms
extensively.

The extensive wartime interest in sound spectrography led Koenig and his colleagues
at Bell Laboratories [22] in 1946 to the invaluable development of a tool that has been used
for speech analysis since then: the spectrogram. Potter et al. [35] showed the usefulness of
the analog spectrogram in analyzing speech. The spectrogram facilitated research in the field
and led Peterson and Barney [34] to publish in 1952 a detailed study of formant values of
different vowels. The development of computers and the FFT led Oppenheim, in 1970 [30],
to develop digital spectrograms, which imitated the analog counterparts.

The MIT Acoustics Lab started work in speech in 1948 with Leo R. Beranek, who in
1954 published the seminal book Acoustics, where he studied sound propagation in tubes. In
1950, Kenneth N. Stevens joined the lab and started work on speech perception. Gunnar
Fant visited the lab at that time and as a result started a strong speech production effort at
KTH in Sweden.

The 1960s marked the birth of digital speech processing. Two books, Gunnar Fant’s
Acoustical Theory of Speech Production [13] in 1960 and James Flanagan’s Speech Analy-
sis: Synthesis and Perception [14] in 1965, had a great impact and sparked interest in the



330 Speech Signal Representations

field. The advent of the digital computer prompted Kelly and Gertsman to create in 1961 the
first digital speech synthesizer [21]. Short-time Fourier analysis, cepstrum, LPC analysis,
pitch and formant tracking, and digital filterbanks were the fruit of that decade.

Short-time frequency analysis was first proposed for analog signals by Fano [11] in
1950 and later by Schroeder and Atal [42].

The mathematical foundation behind linear predictive coding dates to the auto-
regressive models of George Udny Yule (1927) and Gilbert Walker (1931), which led to the
well-known Yule-Walker equations. These equations resulted in a Toeplitz matrix, named
after Otto Toeplitz (1881 - 1940) who studied it extensively. N. Levinson suggested in 1947
an efficient algorithm to invert such a matrix, which J. Durbin refined in 1960 and is now
known as the Levinson-Durbin recursion. The well-known LPC analysis consisted of the
application of the above results to speech signals, as developed by Bishnu Atal [4], J. Burg
[7], Fumitada Itakura and S. Saito [19] in 1968, Markel [27] and John Makhoul [24] in
1973.

The cepstrum was first proposed in 1964 by Bogert, Healy and John Tukey [6] and
further studied by Alan V. Oppenheim [29] in 1965. The popular mel-frequency cepstrum
was proposed by Davis and Mermelstein [8] in 1980, combining the advantages of cepstrum
with knowledge of the non-linear perception of frequency by the human auditory system that
had been studied by E. Zwicker [47] in 1961.

The study of digital filterbanks was first proposed by Schafer and Rabiner in 1971 for
IIR and in 1975 for FIR filters.

Formant tracking was first investigated by Ken Stevens and James Flanagan in the late
1950s, with the foundations for most modern techniques being developed by Schafer and
Rabiner [40], Itakura [20], and Markel [26]. Pitch tracking through digital processing was
first studied by B. Gold [15] in 1962 and then improved by A. M. Noll [28], M. Schroeder
[41], and M. Sondhi [44] in the late 1960s.
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C H A P T E R 7

Speech CodingEquation Section 7

Transmission of speech using data networks
requires the speech signal to be digitally encoded. Voice over IP has become very popular
because of the Internet, where bandwidth limitations make it necessary to compress the
speech signal. Digital storage of audio signals, which can result in higher quality and smaller
size than the analog counterpart, is commonplace in compact discs, digital video discs, and
MP3 files. Many spoken language systems also use coded speech for efficient communica-
tion. For these reasons we devote a chapter to speech and audio coding techniques.

Rather than exhaustively cover all the existing speech and audio coding algorithms we
uncover their underlying technology and enumerate some of the most popular standards. The
coding technology discussed in this chapter has a strong link to both speech recognition and
speech synthesis. For example, the speech synthesis algorithms described in Chapter 16 use
many techniques described here.
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7.1. SPEECH CODERS ATTRIBUTES

How do we compare different speech or audio coders? We can refer to a number of factors,
such as signal bandwidth, bit rate, quality of reconstructed speech, noise robustness, compu-
tational complexity, delay, channel-error sensitivity and standards.

Speech signals can be bandlimited to 10 kHz without significantly affecting the
hearer’s perception. The telephone network limits the bandwidth of speech signals to be-
tween 300 and 3400 Hz, which gives telephone speech a lower quality. Telephone speech is
typically sampled at 8 kHz. The term wideband speech is used for a bandwidth of 50–7000
Hz and a sampling rate of 16 kHz. Finally, audio coding is used in dealing with high-fidelity
audio signals, in which case the signal is sampled at 44.1 kHz.

Reduction in bit rate is the primary purpose of speech coding. The previous bit stream
can be compressed to a lower rate by removing redundancy in the signal, resulting in sav-
ings in storage and transmission bandwidth. If only redundancy is removed, the original
signal can be recovered exactly (lossless compression). In lossy compression, the signal
cannot be recovered exactly, though hopefully it will sound similar to the original.

Depending on system and design constraints, fixed-rate or variable-rate speech coders
can be used. Variable-rate coders are used for non-real time applications, such as voice stor-
age (silence can be coded with fewer bits than fricatives, which in turn use fewer bits than
vowels), or for packet voice transmissions, such as CDMA cellular for better channel utiliza-
tion. Transmission of coded speech through a noisy channel may require devoting more bits
to channel coding and fewer to source coding. For most real-time communication systems, a
maximum bit rate is specified.

The quality of the reconstructed speech signal is a fundamental attribute of a speech
coder. Bit rate and quality are intimately related: the lower the bit rate, the lower the quality.
While the bit rate is inherently a number, it is difficult to quantify the quality. The most
widely used measure of quality is the Mean Opinion Score (MOS) [25], which is the result
of averaging opinion scores for a set of between 20 and 60 untrained subjects. Each listener
characterizes each set of utterances with a score on a scale from 1 (unacceptable quality) to
5 (excellent quality), as shown in Table 7.1. An MOS of 4.0 or higher defines good or toll
quality, where the reconstructed speech signal is generally indistinguishable from the origi-
nal signal. An MOS between 3.5 and 4.0 defines communication quality, which is sufficient
for telephone communications. We show in Section 7.2.1 that if each sample is quantized
with 16 bits, the resulting signal has toll quality (essentially indistinguishable from the un-
quantized signal). See Chapter 16 for more details on perceptual quality measurements.

Table 7.1 Mean Opinion Score (MOS) is a numeric value computed as an average for a num-
ber of subjects, where each number maps to the above subjective quality.

Excellent Good Fair Poor Bad

5 4 3 2 1

Another measure of quality is the signal-to-noise ratio (SNR), defined as the ratio be-
tween the signal’s energy and the noise’s energy in terms of dB:
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The MOS rating of a codec on noise-free speech is often higher than its MOS rating
for noisy speech. This is generally caused by specific assumptions in the speech coder that
tend to be violated when a significant amount of noise is present in the signal. This phe-
nomenon is more accentuated for lower-bit-rate coders that need to make more assumptions.

The computational complexity and memory requirements of a speech coder determine
the cost and power consumption of the hardware on which it is implemented. In most cases,
real-time operation is required at least for the decoder. Speech coders can be implemented in
inexpensive Digital Signal Processors (DSP) that form part of many consumer devices, such
as answering machines and DVD players, for which storage tends to be relatively more ex-
pensive than processing power. DSPs are also used in cellular phones because bit rates are
limited.

All speech coders have some delay, which, if excessive, can affect the dynamics of a
two-way communication. For instance, delays over 150 ms can be unacceptable for highly
interactive conversations. Coder delay is the sum of different types of delay. The first is the
algorithmic delay arising because speech coders usually operate on a block of samples,
called a frame, which needs to be accumulated before processing can begin. Often the
speech coder requires some additional look-ahead beyond the frame to be encoded. The
computational delay is the time that the speech coder takes to process the frame. For real-
time operation, the computational delay has to be smaller than the algorithmic delay. A
block of bits is generally assembled by the encoder prior to transmission, possibly to add
error-correction properties to the bit stream, which cause multiplexing delay. Finally, there is
the transmission delay, due to the time it takes for the frame to traverse the channel. The
decoder will incur a decoder delay to reconstruct the signal. In practice, the total delay of
many speech coders is at least three frames.

If the coded speech needs to be transmitted over a channel, we need to consider possi-
ble channel errors, and our speech decoder should be insensitive to at least some of them.
There are two types of errors: random errors and burst errors, and they could be handled
differently. One possibility to increase the robustness against such errors is to use channel
coding techniques, such as those proposed in Chapter 3. Joint source and channel coding
allows us to find the right combination of bits to devote to speech coding with the right
amount devoted to channel coding, adjusting this ratio adaptively depending on the channel.
Since channel coding will only reduce the number of errors, and not eliminate them, grace-
ful degradation of speech quality under channel errors is typically a design factor for speech
coders. When the channel is the Internet, complete frames may be missing because they
have not arrived in time. Therefore, we need techniques that degrade gracefully with missing
frames.
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7.2. SCALAR WAVEFORM CODERS

In this section we describe several waveform coding techniques, such as linear PCM, µ-law,
and A-law PCM, APCM, DPCM, DM, and ADPCM, that quantize each sample using scalar
quantization. These techniques attempt to approximate the waveform, and, if a large enough
bit rate is available, will get arbitrarily close to it.

7.2.1. Linear Pulse Code Modulation (PCM)

Analog-to-digital converters perform both sampling and quantization simultaneously. To
better understand how this process affects the signal it’s better to study them separately. We
analyzed the effects of sampling in Chapter 5, so now we analyze the effects of quantization,
which encodes each sample with a fixed number of bits. With B bits, it is possible to repre-
sent 2B separate quantization levels. The output of the quantizer �[ ]x n is given by

�[ ] { [ ]}x n Q x n� (7.2)

Linear Pulse Code Modulation (PCM) is based on the assumption that the input dis-
crete signal x n[ ] is bounded

x n X[ ] max� (7.3)

and that we use uniform quantization with quantization step size � which is constant for all
levels ix

x xi i� �
�1 � (7.4)

The input/output characteristics are shown by Figure 7.1 for the case of a 3-bit uni-
form quantizer. The so-called mid-riser quantizer has the same number of positive and nega-
tive levels, whereas the mid-tread quantizer has one more negative than positive levels. The
code c[n] is expressed in two’s complement representation, which for Figure 7.1 varies be-
tween –4 and +3. For the mid-riser quantizer the output �[ ]x n can be obtained from the code
c[n] through

ˆ[ ] ( [ ]) [ ]
2

x n sign c n c n
∆= + ∆ (7.5)

and for the mid-tread quantizer

ˆ[ ] [ ]x n c n= ∆ (7.6)

which is often used in computer systems that use two’s complement representation.
There are two independent parameters for a uniform quantizer: the number of levels

N B
� 2 , and the step size ∆. Assuming Eq. (7.3), we have the relationship

2 2X B
max � � (7.7)
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Figure 7.1 Three-bit uniform quantization characteristics: (a) mid-riser, (b) mid-tread.

In quantization, it is useful to express the relationship between the unquantized sample
x[n] and the quantized sample �[ ]x n as

�[ ] [ ] [ ]x n x n e n� � (7.8)

with e[n] being the quantization noise. If we choose ∆ and B to satisfy Eq. (7.7), then

� � �
� �

2 2
e n[ ] (7.9)

While there is obviously a deterministic relationship between e[n] and x[n], it is con-
venient to assume a probabilistic model for the quantization noise:

1. e[n] is white: E e n e n m me{ [ ] [ ]} [ ]� � � �
2

2. e[n] and x[n] are uncorrelated: E x n e n m{ [ ] [ ]}� � 0

3. e[n] is uniformly distributed in the interval ( / , / )�� �2 2

These assumptions are unrealistic for some signals, except in the case of speech sig-
nals, which rapidly fluctuate between different quantization levels. The assumptions are
reasonable if the step size ∆ is a small enough, or alternatively the number of levels is large
enough (say more than 26).

The variance of such uniform distribution (see Chapter 3) is

� e B

X2
2 2

212 3 2
� �

�

� max (7.10)

after using Eq. (7.7). The SNR is given by
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which implies that each bit contributes to 6 dB of SNR, since 1020 log 2 6≅ .
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Speech samples can be approximately described as following a Laplacian distribution
[40]

p x e
x

x

x( ) �
�1

2

2

�

� (7.12)

and the probability of x falling outside the range ( , )�4 42 2
� �x x is 0.35%. Thus, using

X xmax � 4� , B = 7 bits in Eq. (7.11) results in an SNR of 35 dB, which would be acceptable
in a communications system. Unfortunately, signal energy can vary over 40 dB, due to vari-
ability from speaker to speaker as well as variability in transmission channels. Thus, in prac-
tice, it is generally accepted that 11 bits are needed to achieve an SNR of 35dB while keep-
ing the clipping to a minimum.

Digital audio stored in computers (Windows WAV, Apple AIF, Sun AU, and SND
formats among others) use 16-bit linear PCM as their main format. The Compact Disc-
Digital Audio (CD-DA or simply CD) also uses 16-bit linear PCM. Invented in the late
1960s by James T. Russell, it was launched commercially in 1982 and has become one of
the most successful examples of consumer electronics technology: there were about 700
million audio CD players in 1997. A CD can store up to 74 minutes of music, so the total
amount of digital data that must be stored on a CD is 44,100 samples/(channel*second) * 2
bytes/sample * 2 channels * 60 seconds/minute * 74 minutes = 783,216,000 bytes. This 747
MB are stored in a disk only 12 centimeters in diameter and 1.2 mm thick. CD-ROMs can
record only 650 MB of computer data because they use the remaining bits for error correc-
tion.

7.2.2. µµµµ-law and A-law PCM

Human perception is affected by SNR, because adding noise to a signal is not as noticeable
if the signal energy is large enough. Ideally, we want SNR to be constant for all quantization
levels, which requires the step size to be proportional to the signal value. This can be done
by using a logarithmic compander1

y n x n[ ] ln [ ]� (7.13)

followed by a uniform quantizer on y[n] so that

ˆ[ ] [ ] [ ]y n y n nε= + (7.14)

and, thus,

ˆ ˆ[ ] exp{ [ ]}sign{ [ ]} [ ]exp{ [ ]}x n y n x n x n nε= = (7.15)

after using Eq. (7.13) and (7.14). If �[ ]n is small, then Eq. (7.15) can be expressed as

�[ ] [ ]( [ ]) [ ] [ ] [ ]x n x n n x n x n n� � � �1 � � (7.16)

1 A compander is a nonlinear function that compands one part of the x-axis.
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and, thus, the SNR � 1 2/�
�

is constant for all levels. This type of quantization is not practi-
cal, because an infinite number of quantization steps would be required. An approximation
is the so-called µ-law [51]:
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which is approximately logarithmic for large values of x[n] and approximately linear for
small values of x[n]. A related compander called A-law is also used

y n X

A x n

X
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log
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�

1

1
sign (7.18)

which has greater resolution than µ-law for small sample values, but a range equivalent to
12 bits. In practice, they both offer similar quality. The µ-law curve can be seen in Figure
7.2.

x

y

Xmax-Xmax

Xmax

Xmax

Figure 7.2 Nonlinearity used in the µ-law compression.

In 1972 the ITU-T2 recommendation G.711 standardized telephone speech coding at
64 kbps for digital transmission of speech through telephone networks. It uses 8 bits per
sample and an 8-kHz sampling rate with either µ-law or A-law. In North America and Japan,
µ-law with µ = 255 is used, whereas, in the rest of the world, A-law with A = 87.56 is used.
Both compression characteristics are very similar and result in an approximate SNR of 35
dB. Without the logarithmic compressor, a uniform quantizer requires approximately 12 bits
per sample to achieve the same level of quality. All the speech coders for telephone speech
described in this chapter use G.711 as a baseline reference, whose quality is considered toll,

2 The International Telecommunication Union (ITU) is a part of the United Nations Economic, Scientific and Cul-
tural Organization (UNESCO). ITU-T is the organization within ITU responsible for setting global telecommunica-
tion standards. Within ITU-T, Study Group 15 (SG15) is responsible for formulating speech coding standards. Prior
to 1993, telecommunication standards were set by the Comité Consultatif International Téléphonique et Té-
légraphique (CCITT), which was reorganized into the ITU-T that year.
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and an MOS of about 4.0. G.711 is used by most digital central office switches, so that when
you make a telephone call using your plain old telephone service (POTS), your call is en-
coded with G.711. G.711 has an MOS of about 4.3.

7.2.3. Adaptive PCM

When quantizing speech signals we confront a dilemma. On the one hand, we want the
quantization step size to be large enough to accommodate the maximum peak-to-peak range
of the signal and avoid clipping. On the other hand, we need to make the step size small to
minimize the quantization noise. One possible solution is to adapt the step size to the level
of the input signal.

The basic idea behind Adaptive PCM (APCM) is to let the step size ∆[n] be propor-
tional to the standard deviation of the signal �[ ]n :

� �[ ] [ ]n n� 0� (7.19)

An equivalent method is to use a fixed quantizer but have a time-varying gain G[n],
which is inversely proportional to the signal’s standard deviation

G n G n[ ] / [ ]� 0 � (7.20)

Estimation of the signal’s variance, or short-time energy, is typically done by low-pass
filtering x n2[ ]. With a first-order IIR filter, the variance �

2[ ]n is computed as

� �� �
2 2 21 1 1[ ] [ ] ( ) [ ]n n x n� � � � � (7.21)

with � controlling the time constant of the filter T Fs� �1/ ( ln )� , Fs the sampling rate, and
0 1� �� . In practice, � is chosen so that the time constant ranges between 1 ms (� � 088.
at 8 kHz) and 10 ms (� � 0 987. at 8 kHz).

Alternatively, � 2[ ]n can be estimated from the past M samples:
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In practice, it is advantageous to set limits on the range of values of ∆[n] and G[n]:

� � �min max[ ]� �n (7.23)

G G n Gmin max[ ]� � (7.24)

with the ratios � �max min/ and G Gmax min/ determining the dynamic range of the system. If
our objective is to obtain a relatively constant SNR over a range of 40 dB, these ratios can
be 100.

Feedforward adaptation schemes require us to transmit, in addition to the quantized
signal, either the step size ∆[n] or the gain G[n]. Because these values evolve slowly with
time, they can be sampled and quantized at a low rate. The overall rate will be the sum of the
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bit rate required to transmit the quantized signal plus the bit rate required to transmit either
the gain or the step size.

Another class of adaptive quantizers use feedback adaptation to avoid having to send
information about the step size or gain. In this case, the step size and gain are estimated from
the quantizer output, so that they can be recreated at the decoder without any extra informa-
tion. The corresponding short-time energy can then be estimated through a first-order IIR
filter as in Eq. (7.21) or a rectangular window as in Eq. (7.22), but replacing x n2[ ] by � [ ]x n2 .

Another option is to adapt the step size

� �[ ] [ ]n P n� �1 (7.25)

where P � 1 if the previous codeword corresponds to the largest positive or negative quan-
tizer level, and P � 1 if the previous codeword corresponds to the smallest positive or nega-
tive quantizer level. A similar process can be done for the gain.

APCM exhibits an improvement between 4–8 dB over µ-law PCM for the same bit
rate.

7.2.4. Differential Quantization

Speech coding is about finding redundancy in the signal and removing it. We know that
there is considerable correlation between adjacent samples, because on the average the sig-
nal doesn’t change rapidly from sample to sample. A simple way of capturing this is to
quantize the difference d n[ ] between the current sample x n[ ] and its predicted value ~[ ]x n

d n x n x n[ ] [ ] ~[ ]� � (7.26)

with its quantized value represented as

�[ ] { [ ]} [ ] [ ]d n Q d n d n e n� � � (7.27)

where e[n] is the quantization error. Then, the quantized signal is the sum of the predicted
signal ~[ ]x n and the quantized difference �[ ]d n

�[ ] ~[ ] �[ ] [ ] [ ]x n x n d n x n e n� � � � (7.28)

Figure 7.3 Block diagram of a DPCM encoder and decoder with feedback prediction.
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If the prediction is good, Eq. (7.28) tells us that the quantization error will be small.
Statistically, we need the variance of e n[ ] to be lower than that of x n[ ] for differential cod-
ing to provide any gain. Systems of this type are generically called Differential Pulse Code
Modulation (DPCM) [11] and can be seen in Figure 7.3.

Delta Modulation (DM) [47] is a 1-bit DPCM, which predicts the current sample to be
the same as the past sample:

~[ ] [ ]x n x n� �1 (7.29)

so that we transmit whether the current sample is above or below the previous sample.

d n
x n x n

x n x n
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with ∆ being the step size. If ∆ is too small, the reconstructed signal will not increase as fast
as the original signal, a condition known as slope overload distortion. When the slope is
small, the step size ∆ also determines the peak error; this is known as granular noise. Both
quantization errors can be seen in Figure 7.4. The choice of ∆ that minimizes the mean
squared error will be a tradeoff between slope overload and granular noise.

x
a
(t)

xa(t)
~

Figure 7.4 An example of slope overload distortion and granular noise in a DM encoder.

If the signal is oversampled by a factor N, and the step size is reduced by the same
amount (i.e., ∆/N), the slope overload will be the same, but the granular noise will decrease
by a factor N. While the coder is indeed very simple, sampling rates of over 200 kbps are
needed for SNRs comparable to PCM, so DM is rarely used as a speech coder.

However, delta modulation is useful in the design of analog-digital converters, in a
variant called sigma-delta modulation [44] shown in Figure 7.5. First the signal is lowpass
filtered with a simple analog filter, and then it is oversampled. Whenever the predicted sig-
nal [ ]x n� is below the original signal x[n], the difference d[n] is positive. This difference d[n]

is averaged over time with a digital integrator whose output is e[n]. If this situation persists,
the accumulated error e[n] will exceed a positive value A, which causes a 1 to be encoded
into the stream q[n]. A digital-analog converter is used in the loop which increments by one
the value of the predicted signal [ ]x n� . The system acts in the opposite way if the predicted

signal [ ]x n� is above the original signal x[n] for an extended period of time. Since the signal

is oversampled, it changes very slowly from one sample to the next, and this quantization
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can be accurate. The advantages of this technique as an analog-digital converter are that in-
expensive analog filters can be used and only a simple 1-bit A/D is needed. The signal can
next be low-passed filtered with a more accurate digital filter and then downsampled.

Figure 7.5 A sigma-delta modulator used in an oversampling analog-digital converter.

Adaptive Delta Modulation (ADM) combines ideas from adaptive quantization and
delta modulation with the so-called Continuously Variable Slope Delta Modulation
(CVSDM) [22] having a step size that increases

1
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with 0 1� �� and 0 2 1� ��k k . The step size increases if the last three errors have the same
sign and decreases otherwise.

Improved DPCM is achieved through linear prediction in which ~[ ]x n is a linear com-
bination of past quantized values �[ ]x n

~[ ] �[ ]x n a x n kk
k

p

� �
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(7.32)

DPCM systems with fixed prediction coefficients can provide from 4 to 11 dB im-
provement over direct linear PCM, for prediction orders up to p = 4, at the expense of in-
creased computational complexity. Larger improvements can be obtained by adapting the
prediction coefficients. The coefficients can be transmitted in a feedforward fashion or not
transmitted if the feedback scheme is selected.

ADPCM [6] combines differential quantization with adaptive step-size quantization.
ITU-T recommendation G.726 uses ADPCM at bit rates of 40, 32, 24, and 16 kbps, with 5,
4, 3, and 2 bits per sample, respectively. It employs an adaptive feedback quantizer and an
adaptive feedback pole-zero predictor. Speech at bit rates of 40 and 32 kbps offer toll qual-
ity, while the other rates don’t. G.727 is called embedded ADPCM because the 2-bit quan-
tizer is embedded into the 3-bit quantizer, which is embedded into the 4-bit quantizer, and
into the 5-bit quantizer. This makes it possible for the same codec to use a lower bit rate,
with a graceful degradation in quality, if channel capacity is temporarily limited. Earlier
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standards G.721 [7, 13] (created in 1984) and G.723 have been subsumed by G.726 and
G.727. G.727 has a MOS of 4.1 for 32 kbps and is used in submarine cables. The Windows
WAV format also supports a variant of ADPCM. These standards are shown in Table 7.2.

Table 7.2 Common scalar waveform standards used.

Standard Bit Rate

(kbits/sec)

MOS Algorithm Sampling Rate
(kHz)

Stereo CD Audio 1411 5.0 16-bit linear PCM 44.1

WAV, AIFF, SND Variable - 16/8-bit linear PCM 8, 11.025, 16,
22.05, 44.1, 48

G.711 64 4.3 µ-law/A-law PCM 8

G.727 40, 32, 24, 16 4.2 (32k) ADPCM 8

G.722 64, 56, 48 Subband ADPCM 16

Wideband speech (50–7000 Hz) increases intelligibility of fricatives and overall per-
ceived quality. In addition, it provides more subject presence and adds a feeling of transpar-
ent communication. ITU-T Recommendation G.722 encodes wideband speech with bit rates
of 48, 56, and 64 kbps. Speech is divided into two subbands with QMF filters (see Chapter
5). The upper band is encoded using a 16-kbps ADPCM similar to the G.727 standard. The
lower band is encoded using a 48-kbps ADPCM with the 4- and 5-bit quantizers embedded
in the 6-bit quantizer. The quality of this system scores almost 1 MOS higher than that of
telephone speech.

7.3. SCALAR FREQUENCY DOMAIN CODERS

Frequency domain is advantageous because:

1. The samples of a speech signal have a great deal of correlation among them,
whereas frequency domain components are approximately uncorrelated and

2. The perceptual effects of masking described in Chapter 2 can be more easily
implemented in the frequency domain. These effects are more pronounced for
high-bandwidth signals, so frequency-domain coding has been mostly used
for CD-quality signals and not for 8-kHz speech signals.

7.3.1. Benefits of Masking

As discussed in Chapter 2, masking is a phenomenon by which human listeners cannot per-
ceive a sound if it is below a certain level. The consequence is that we don’t need to encode
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such sound. We now illustrate how this masked threshold is computed for MPEG3-1 layer 1.
Given an input signal s[n] quantized with b bits, we obtain the normalized signal x[n] as

1

[ ]
[ ]

2b

s n
x n

N −= (7.33)

where N = 512 is the length of the DFT. Then, using a Hanning window,

( )[ ] 0.5 0.5cos 2 /w n n Nπ= − (7.34)

we obtain the log-power spectrum as
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where 0P is the playback SPL, which, in the absence of any volume information, is defined

as 90 dB.
Tonal components are identified in Eq. (7.35) as local maxima, which exceed neigh-

boring components within a certain bark distance by at least 7 dB. Specifically, bin k is tonal
if and only if

[ ] [ 1]P k P k> ± (7.36)

and

[ ] [ ] 7P k P k l dB> ± + (7.37)

where 1 kl< ≤ ∆ , and k∆ is given by

2 2 63 (170Hz 5.5kHz)

3 63 127 (5.5kHz,11kHz)

6 127 256 (11kHz,22kHz)
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(7.38)

so that the power of that tonal masker is computed as the sum of the power in that bin and its
left and right adjacent bins:
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The noise maskers are computed from as the sum of power spectrum of the remaining

frequency bins k in a critical band not within a neighborhood k∆ of the tonal maskers:

3 MPEG (Moving Picture Experts Group) is the nickname given to a family of International Standards for coding
audiovisual information.
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where j spans a critical band.
To compute the overall masked threshold we need to sum all masking thresholds con-

tributed by each frequency bin i, which is approximately equal to the maximum (see Chapter
2):

( )( )[ ] max [ ], max [ ]h i
i

T k T k T k= (7.41)

In Chapter 2 we saw that whereas temporal postmasking can last from 50 to 300 ms,
temporal premasking tends to last about 5 ms. This is also important because when a fre-
quency transform is quantized, the blocking effects of transform’s coders can introduce
noise above the temporal premasking level that can be audible, since 1024 points corre-
sponds to 23 ms at a 44-kHz sampling rate. To remove this pre-echo distortion, audible in
the presence of castanets and other abrupt transient signals, subband filtering has been pro-
posed, whose time constants are well below the 5-ms premasking time constant.

7.3.2. Transform Coders

We now use the Adaptive Spectral Entropy Coding of High Quality Music Signals (ASPEC)
algorithm, which is the basis for the MPEG1 Layer 1 audio coding standard [24], to illus-
trate how transform coders work. The DFT coefficients are grouped into 128 subbands, and
128 scalar quantizers are used to transmit all the DFT coefficients. It has been empirically
found that a difference of less than 1 dB between the original amplitude and the quantized
value cannot be perceived. Each subband j has a quantizer having jk levels and step size of

jT as

( )1 2 rnd /j j jk P T= + × (7.42)

where jT is the quantized JND threshold, jP is the quantized magnitude of the largest real

or imaginary component of the jth subband, and rnd( ) is the nearest integer rounding func-
tion. Entropy coding is used to encode the coefficients of that subband. Both jT and jP are

quantized on a dB scale using 8-bit uniform quantizers with a 170-dB dynamic range, thus
with a step size of 0.66 dB. Then they are transmitted as side information.

There are two main methods of obtaining a frequency-domain representation:

1. Through subband filtering via a filterbank (see Chapter 5). When a filterbank
is used, the bandwidth of each band is chosen to increase with frequency fol-
lowing a perceptual scale, such as the Bark scale. As shown in Chapter 5,
such filterbanks yield perfect reconstruction in the absence of quantization.
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2. Through frequency-domain transforms. Instead of using a DFT, higher effi-
ciency can be obtained by the use of an MDCT (see Chapter 5).

The exact implementation of the MPEG1 Layer 1 standard is much more complicated
and beyond the scope of this book, though it follows the main ideas described here; the same
is true for the popular MPEG1 layer III, also known as MP3. Implementation details can be
found in [42].

7.3.3. Consumer Audio

Dolby Digital, MPEG, DTS and the Perceptual Audio Coder (PAC) [28] are all audio coders
based on frequency-domain coding. Except for MPEG-1, which supports only stereo signals,
the rest support multichannel.

Dolby Digital is multichannel digital audio, using lossy AC-3 [54] coding technology
from original PCM with a sample rate of 48 kHz at up to 24 bits. The bit rate varies from 64
to 448 kbps, with 384 being the normal rate for 5.1 channels and 192 the normal rate for
stereo (with or without surround encoding). Most Dolby Digital decoders support up to 640
kbps. Dolby Digital is the format used for audio tracks on almost all Digital Video/Versatile
Discs (DVD). A DVD-5 with only one surround stereo audio stream (at 192 kbps) can hold
over 55 hours of audio. A DVD-18 can hold over 200 hours.

MPEG was established in 1988 as part of the joint ISO (International Standardization
Organization) / IEC (International Electrotechnical Commission) Technical Committee on
Information technology. MPEG-1 was approved in 1992 and MPEG-2 in 1994. Layers I to
III define several specifications that provide better quality at the expense of added complex-
ity. MPEG-1 audio is limited to 384 kbps. MPEG1 Layer III audio [23], also known as MP3,
is very popular on the Internet, and many compact players exist.

MPEG-2 Audio, one of the audio formats used in DVD, is multichannel digital audio,
using lossy compression from 16-bit linear PCM at 48 kHz. Tests have shown that for nearly
all types of speech and music, at a data rate of 192 kbps and over, on a stereo channel,
scarcely any difference between original and coded versions was observable (ranking of
coded item > 4.5), with the original signal needing 1.4 Mbps on a CD (reduction by a factor
of 7). One advantage of the MPEG Audio technique is that future findings regarding psy-
choacoustic effects can be incorporated later, so it can be expected that today’s quality level
using 192 kbps will be achievable at lower data rates in the future. A variable bit rate of 32
to 912 kbps is supported for DVDs.

DTS (Digital Theater Systems) Digital Surround is another multi-channel (5.1) digital
audio format, using lossy compression derived from 20-bit linear PCM at 48 kHz. The com-
pressed data rate varies from 64 to 1536 kbps, with typical rates of 768 and 1536 kbps.

7.3.4. Digital Audio Broadcasting (DAB)

Digital Audio Broadcasting (DAB) is a means of providing current AM and FM listeners
with a new service that offers: sound quality comparable to that of compact discs, increased
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service availability (especially for reception in moving vehicles), flexible coverage scenar-
ios, and high spectrum efficiency.

Different approaches have been considered for providing listeners with such a service.
Currently, the most advanced system is one commonly referred to as Eureka 147 DAB,
which has been under development in Europe under the Eureka Project EU147 since 1988.
Other approaches include various American in-band systems (IBOC, IBAC, IBRC, FMDigi-
tal, and FMeX) still in development, as well as various other systems promising satellite
delivery, such as WorldSpace and CD Radio, still in development as well. One satellite-
delivery system called MediaStar (formerly Archimedes) proposes to use the Eureka 147
DAB signal structure, such that a single receiver could access both terrestrial and satellite
broadcasts.

DAB has been under development since 1981 at the Institut für Rundfunktechnik
(IRT) and since 1987 as part of a European research project (Eureka 147). The Eureka 147
DAB specification was standardized by the European Telecommunications Standards Insti-
tute (ETSI) in February 1995 as document ETS 300 401, with a draft second edition issued
in June 1996. In December 1994, the International Telecommunication Union—
Radiocommunication (ITU-R) recommended that this technology, referred to as Digital Sys-
tem A, be used for implementing DAB services.

The Eureka 147 DAB signal consists of multiple carriers within a 1.536-MHz channel
bandwidth. Four possible modes of operation define the channel coding configuration, speci-
fying the total number of carriers, the carrier spacing, and also the guard interval duration.
Each channel provides a raw data rate of 2304 kbps; after error protection, a useful data rate
of anywhere between approximately 600 kbps up to 1800 kbps is available to the service
provider, depending on the user-specified multiplex configuration. This useful data rate can
be divided into an infinite number of possible configurations of audio and data programs.
All audio programs are individually compressed using MUSICAM (MPEG-1 Layer II).

For each useful bit, 1 1/3 ... 4 bits are transmitted. This extensive redundancy makes it
possible to reconstruct the transmitted bit sequence in the receiver, even if part of it is dis-
rupted during transmission (FEC—forward error correction). In the receiver, error conceal-
ment can be carried out at the audio reproduction stage, so that residual transmission errors
which could not be corrected do not always cause disruptive noise.

7.4. CODE EXCITED LINEAR PREDICTION (CELP)

The use of linear predictors removes redundancy in the signal, so that coding of the residual
signal can be done with simpler quantizers. We first introduce the LPC vocoder and then
introduce coding of the residual signal with a very popular technique called CELP.

7.4.1. LPC Vocoder

A typical model for speech production is shown in Figure 7.6, which has a source, or excita-
tion, driving a linear time-varying filter. For voiced speech, the excitation is an impulse train
spaced P samples apart. For unvoiced speech, the source is white random noise. The filter
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h nm[ ] for frame m changes at regular intervals, say every 10 ms. If this filter is represented
with linear predictive coding, it is called an LPC vocoder [3].

Figure 7.6 Block diagram of an LPC vocoder.

In addition to transmitting the gain and LPC coefficients, the encoder has to determine
whether the frame is voiced or unvoiced, as well as the pitch period P for voiced frames.

The LPC vocoder produces reasonable quality for unvoiced frames, but often results in
somewhat mechanical sound for voiced sounds, and a buzzy quality for voiced fricatives.
More importantly, the LPC vocoder is quite sensitive to voicing and pitch errors, so that an
accurate pitch tracker is needed for reasonable quality. The LPC vocoder also performs
poorly in the presence of background noise. Nonetheless, it can be highly intelligible. The
Federal Standard 1015 [55], proposed for secure communications, is based on a 2.4-kbps
LPC vocoder.

It’s also possible to use linear predictive coding techniques together with Huffman
coding [45] to achieve lossless compression of up to 50%.

7.4.2. Analysis by Synthesis

Code Excited Linear Prediction (CELP) [5] is an umbrella for a family of techniques that
quantize the LPC residual using VQ, thus the term code excited, using analysis by synthesis.
In addition CELP uses the fact that the residual of voiced speech has periodicity and can be
used to predict the residual of the current frame. In CELP coding the LPC coefficients are
quantized and transmitted (feedforward prediction), as well as the codeword index. The pre-
diction using LPC coefficients is called short-term prediction. The prediction of the residual
based on pitch is called long-term prediction. To compute the quantized coefficients we use
an analysis-by-synthesis technique, which consists of choosing the combination of parame-
ters whose reconstructed signal is closest to the analysis signal. In practice, not all coeffi-
cients of a CELP coder are estimated in an analysis-by-synthesis manner.

We first estimate the pth-order LPC coefficients from the samples x[n] for frame t us-
ing the autocorrelation method, for example. We then quantize the LPC coefficients to

1 2( , , , )pa a a� with the techniques described in Section 7.4.5. The residual signal e[n] is

obtained by inverse filtering x[n] with the quantized LPC filter
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Given the transfer function of the LPC filter

h nm[ ]
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we can obtain the first M coefficients of the impulse response h[n] of the LPC filter by driv-
ing it with an impulse as
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so that if we quantize a frame of M samples of the residual ( [0], [1], [ 1])Te e e M= −e � to

( [0], [1], [ 1])T
i i i ie e e M= −e � , we can compute the reconstructed signal ˆ [ ]ix n as
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where the second term in the sum depends on the residual for previous frames, which we
already have. Let’s define signal 0[ ]r n as the second term of Eq. (7.46):
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which is the output of the LPC filter when there is no excitation for frame t. The important
thing to note is that 0[ ]r n does not depend on [ ]ie n

It is convenient to express Eqs. (7.46) and (7.47) in matrix form as

0ˆ i i= +x He r (7.48)

where matrix H corresponds to the LPC filtering operation with its memory set to 0:

H �

L

N

MMMMMM

O

Q

PPPPPP
� �

�

h

h h

h h h

h h h h
M M

M M

0

1 0

1 2 0

1 1 0

0 0 0

0 0

0

�

�

� � � � �

�

�

(7.49)

Given the large dynamic range of the residual signal, we use gain-shape quantization,
where we quantize the gain and the gain-normalized residual separately:
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i iλ=e c (7.50)

where � is the gain and ci is the codebook entry i. This codebook is known as the fixed
codebook because its vectors do not change from frame to frame. Usually the size of the
codebook is selected as 2 N so that full use is made of all N bits. Codebook sizes typically
vary from 128 to 1024. Combining Eq. (7.48) with Eq. (7.50), we obtain

0ˆ i iλ= +x Hc r (7.51)

The error between the original signal x and the reconstructed signal ˆ ix is

ˆ i= −ε x x (7.52)

The optimal gain � and codeword index i are the ones that minimize the squared error
between the original signal and the reconstructed4 signal:

2 2 2 2
0 0 0ˆ( , ) 2 ( )T T T T

i i i i iE i λ λ λ λ= − = − − = − + − −x x x Hc r x r c H Hc c H x r (7.53)

where the term
2

0−x r does not depend on � or i and can be neglected in the minimization.

For a given ic , the gain � i that minimizes Eq. (7.53) is given by
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Inserting Eq. (7.54) into (7.53) lets us compute the index j as the one that minimizes
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So we first obtain the codeword index j according to Eq. (7.55) and then the gain � j

according to Eq. (7.54), which is scalarly quantized to �� j . Both codeword index j and �� j

are transmitted. In the algorithm described here, we first chose the quantized LPC coeffi-
cients 1 2( , , , )pa a a� independently of the gains and codeword index, and then we chose the

codeword index independently of the quantized gain �� j . This procedure is called open-loop

estimation, because some parameters are obtained independently of the others. This is
shown in Figure 7.7. Closed-loop estimation [49] means that all possible combinations of
quantized parameters are explored. Closed-loop is more computationally expensive but
yields lower squared error.

4 A beginner’s mistake is to find the codebook index that minimizes the squared error of the residual. This does not
minimize the difference between the original signal and the reconstructed signal.
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Figure 7.7 Analysis-by-synthesis principle used in a basic CELP.

7.4.3. Pitch Prediction: Adaptive Codebook

The fact that speech is highly periodic during voiced segments can also be used to reduce
redundancy in the signal. This can be done by predicting the residual signal e[n] at the cur-
rent vector with samples from the past residual signal shifted a pitch period t:

[ ] [ ] [ ] [ ] [ ]a f f a a f f
t i i t t i ie n e n t c n c n c nλ λ λ λ= − + = + (7.56)

Using the matrix framework we described before, Eq. (7.56) can be expressed as

a a f f
ti t t i iλ λ= +e c c (7.57)

where we have made use of an adaptive codebook [31], where a
tc is the adaptive codebook

entry j with corresponding gain �
a , and ci

f is the fixed or stochastic codebook entry i with
corresponding gain � f . The adaptive codebook entries are segments of the recently synthe-
sized excitation signal

( [ ], [1 ], , [ 1 ])a T
t e t e t e M t= − − − −c � (7.58)

where t is the delay which specifies the start of the adaptive codebook entry t. The range of t
is often between 20 and 147, since this can be encoded with 7 bits. This corresponds to a
range in pitch frequency between 54 and 400 Hz for a sampling rate of 8 kHz.

The contribution of the adaptive codebook is much larger than that of the stochastic
codebook for voiced sounds. So we generally search for the adaptive codebook first, using
Eq. (7.58) and a modified version of Eqs. (7.55), (7.54), replacing i by t. Closed-loop search
of both t and gain here often yields a much larger error reduction.
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7.4.4. Perceptual Weighting and Postfiltering

The objective of speech coding is to reduce the bit rate while maintaining a perceived level
of quality; thus, minimization of the error is not necessarily the best criterion. A perceptual
weighting filter tries to shape the noise so that it gets masked by the speech signal (see
Chapter 2). This generally means that most of the quantization noise energy is located in
spectral regions where the speech signal has most of its energy. A common technique [4]
consists in approximating this perceptual weighting with a linear filter

W z
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A z
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�
(7.59)

where A(z) is the predictor polynomial
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Choosing � and � so that and 0 1γ β< < ≤ , implies that the roots of A z( / )� and A z( / )�

will move closer to the origin of the unit circle than the roots of A z( ) , thus resulting in a
frequency response with wider resonances. This perceptual filter therefore deemphasizes the
contribution of the quantization error near the formants. A common choice of parameters is
� � 10. and � � 08. , since it simplifies the implementation. This filter can easily be included
in the matrix H, and a CELP coder incorporating the perceptual weighting is shown in
Figure 7.8.

Figure 7.8 Diagram of a CELP coder. Both long-term and short-term predictors are used, to-
gether with a perceptual weighting.

Despite the perceptual weighting filter, the reconstructed signal still contains audible
noise. This filter reduces the noise in those frequency regions that are perceptually irrelevant
without degrading the speech signal. The postfilter generally consists of a short-term postfil-
ter to emphasize the formant structure and a long-term postfilter to enhance the periodicity
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of the signal [10]. One possible implementation follows Eq. (7.59) with values of � � 05.
and � � 0 75. .

7.4.5. Parameter Quantization

To achieve a low bit rate, all the coefficients need to be quantized. Because of its coding
efficiency, vector quantization is the compression technique of choice to quantize the predic-
tor coefficients. The LPC coefficients cannot be quantized directly, because small errors
produced in the quantization process may result in large changes in the spectrum and possi-
bly unstable filters. Thus, equivalent representations that guarantee stability are used, such
as reflection coefficients, log-area ratios, and the line spectral frequencies (LSF) described
in Chapter 6. LSF are used most often, because it has been found empirically that they be-
have well when they are quantized and interpolated [2]. For 8 kHz, 10 predictor coefficients
are often used, which makes using a single codebook impractical because of the large di-
mension of the vector. Split-VQ [43] is a common choice, where the vectors are divided into
several subvectors, and each is vector quantized. Matrix quantization can also be used to
exploit the correlation of these subvectors across consecutive time frames. Transparent
quality, defined as average spectral distortion below 1 dB with no frames above 4 dB, can be
achieved with fewer than 25 bits per frame.

A frame typically contains around 20 to 30 milliseconds, which at 8 kHz represents
160–240 samples. Because of the large vector dimension, it is impractical to quantize a
whole frame with a single codebook. To reduce the dimensionality, the frame is divided into
four or more nonoverlapping sub-frames. The LSF coefficients for each subframe are line-
arly interpolated between the two neighboring frames.

A typical range of the pitch prediction for an 8-kHz sampling rate goes from 2 to 20
ms, from 20 to 147 samples, 2.5 ms to 18.375 ms, which can be encoded with 7 bits. An
additional bit is often used to encode fractional delays for the lower pitch periods. These
fractional delays can be implemented through upsampling as described in Chapter 5. The
subframe gain of the adaptive codebook can be effectively encoded with 3 or 4 bits. Alterna-
tively, the gains of all sub-frames within a frame can be encoded through VQ, resulting in
more efficient compression.

The fixed codebook can be trained from data using the techniques described in Chap-
ter 4. This will offer the lowest distortion for the training set but doesn’t guarantee low dis-
tortion for mismatched test signals. Also, it requires additional storage, and full search in-
creases computation substantially.

Since subframes should be approximately white, the codebook can be populated from
samples of a white process. A way of reducing computation is to let those noise samples be
only +1, 0, or –1, because only additions are required. Codebooks of a specific type, known
as algebraic codebooks [1], offer even more computational savings because they contain
many 0s. Locations for the 4 pulses per subframe under the G.729 standard are shown in
Table 7.3.
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Full search can efficiently be done with this codebook structure. Algebraic codebooks
can provide almost as low distortion as trained codebooks can, with low computational
complexity.

Table 7.3 Algebraic codebooks for the G.729 standard. Each of the four codebooks has one
pulse in one possible location indicated by 3 bits for the first three codebooks and 4 bits for the
last codebook. The sign is indicated by an additional bit. A total of 17 bits are needed to en-
code a 40-sample subframe.

Amplitude Positions

±1 0, 5, 10, 15, 20, 25, 30, 35

±1 1, 6, 11, 16, 21, 26, 31, 36

±1 2, 7, 12, 17, 22, 27, 32, 37

±1 3, 8, 13, 18, 23, 28, 33, 38

4, 9, 14, 19, 24, 29, 34, 39

7.4.6. CELP Standards

There are many standards for speech coding based on CELP, offering various points in the
bit-rate/quality plane, mostly depending on when they were created and how refined the
technology was at that time.

Voice over Internet Protocol (Voice over IP) consists of transmission of voice through
data networks such as the Internet. H.323 is an umbrella standard which references many
other ITU-T recommendations. H.323 provides the system and component descriptions, call
model descriptions, and call signaling procedures. For audio coding, G.711 is mandatory,
while G.722, G.728, G.723.1, and G.729 are optional. G.728 is a low-delay CELP coder that
offers toll quality at 16 kbps [9], using a feedback 50th-order predictor, but no pitch predic-
tion. G.729 [46] offers toll quality at 8 kbps, with a delay of 10 ms. G.723.1, developed by
DSP Group, including Audiocodes Ltd., France Telecom, and the University of Sherbrooke,
has slightly lower quality at 5.3 and 6.3 kbps, but with a delay of 30 ms. These standards are
shown in Table 7.4.

Table 7.4 Several CELP standards used in the H.323 specification used for teleconferencing
and voice streaming through the internet.

Standard Bit Rate

(kbps)

MOS Algorithm H.323 Comments

G.728 16 4.0 No pitch prediction Optional Low -delay

G.729 8 3.9 ACELP Optional

G.723.1 5.3, 6.3 3.9 ACELP for 5.3k Optional
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In 1982, the Conference of European Posts and Telegraphs (CEPT) formed a study
group called the Groupe Spécial Mobile (GSM) to study and develop a pan-European public
land mobile system. In 1989, GSM responsibility was transferred to the European Tele-
communication Standards Institute (ETSI), and the phase I GSM specifications were pub-
lished in 1990. Commercial service was started in mid 1991, and by 1993 there were 36
GSM networks in 22 countries, with 25 additional countries considering or having already
selected GSM. This is not only a European standard; South Africa, Australia, and many
Middle and Far East countries have chosen GSM. The acronym GSM now stands for
Global System for Mobile telecommunications. The GSM group studied several voice cod-
ing algorithms on the basis of subjective speech quality and complexity (which is related to
cost, processing delay, and power consumption once implemented) before arriving at the
choice of a Regular Pulse Excited–Linear Predictive Coder (RPE-LPC) with a Long Term
Predictor loop [56]. Neither the original full-rate at 13 kbps [56] nor the half-rate at 5.6
kbps [19] achieves toll quality, though the enhanced full-rate (EFR) standard based on
ACELP [26] has toll quality at the same rates.

The Telecommunication Industry Association (TIA) and the Electronic Industries Alli-
ance (EIA) are organizations accredited by the American National Standards Institute
(ANSI) to develop voluntary industry standards for a wide variety of telecommunication
products. TR-45 is the working group within TIA devoted to mobile and personal communi-
cation systems. Time Division Multiple Access (TDMA) is a digital wireless technology that
divides a narrow radio channel into framed time slots (typically 3 or 8) and allocates a slot to
each user. The TDMA Interim Standard 54, or TIA/EIA/IS54, was released in early 1991 by
both TIA and EIA. It is available in North America at both the 800-MHz and 1900-MHz
bands. IS54 [18] at 7.95 kbps is used in North America’s TDMA (Time Division Multiple
Access) digital telephony and has quality similar to the original full-rate GSM. TDMA IS-
136 is an update released in 1994.

Table 7.5 CELP standards used in cellular telephony.

Standard Bit Rate

(kbps)

MOS Algorithm Cellular Comments

Full-rate GSM 13 3.6 VSELP
RTE-LTP

GSM

EFR GSM 12.2 4.5 ACELP GSM

IS-641 7.4 4.1 ACELP PCS1900

IS-54 7.95 3.9 VSELP TDMA

IS-96a max 8.5 3.9 QCELP CDMA Variable-rate

Code Division Multiple Access (CDMA) is a form of spread spectrum, a family of
digital communication techniques that have been used in military applications for many
years. The core principle is the use of noiselike carrier waves, and, as the name implies,
bandwidths much wider than that required for simple point-to-point communication at the
same data rate. Originally there were two motivations: either to resist enemy efforts to jam
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the communications (anti-jam, or AJ) or to hide the fact that communication was even tak-
ing place, sometimes called low probability of intercept (LPI). The service started in 1996 in
the United States, and by the end of 1999 there were 50 million subscribers worldwide. IS-
96 QCELP [14], used in North America’s CDMA, offers variable-rate coding at 8.5, 4, 2
and 0.8 kbps. The lower bit rate is transmitted when the coder detects background noise.
TIA/EIA/IS-127-2 is a standard for an enhanced variable-rate codec, whereas TIA/EIA/IS-
733-1 is a standard for high-rate. Standards for CDMA, TDMA, and GSM are shown in
Table 7.5.

Third generation (3G) is the generic term used for the next generation of mobile
communications systems. 3G systems will provide enhanced services to those—such as
voice, text, and data—predominantly available today. The Universal Mobile Telecommuni-
cations System (UMTS) is a part of ITU's International Mobile Telecommunications (IMT)-
2000 vision of a global family of third-generation mobile communications systems. It has
been assigned to the frequency bands 1885–2025 and 2110–2200 MHz. The first networks
are planned to launch in Japan in 2001, with European countries following in early 2002. A
major part of 3G is General Packet Radio Service (GPRS), under which carriers charge by
the packet rather than by the minute. The speech coding standard for CDMA2000, the um-
brella name for the third-generation standard in the United States, is expected to gain ap-
proval late in 2000. An adaptive multi rate wideband speech codec has also been proposed
for the GSM’s 3G [16], which has five modes of operation from 24 kbps down to 9.1 kbps.

While most of the work described above uses a sampling rate of 8 kHz, there has been
growing interest in using CELP techniques for high bandwidth and particularly in a scalable
way so that a basic layer contains the lower frequency and the higher layer either is a full-
band codec [33] or uses a parametric model [37].

7.5. LOW-BIT RATE SPEECH CODERS

In this section we describe a number of low-bit-rate speech coding techniques including the
mixed-excitation LPC vocoder, harmonic coding, and waveform interpolation. These coding
techniques are also used extensively in speech synthesis.

Waveform-approximating coders are designed to minimize the difference between the
original signal and the coded signal. Therefore, they produce a reconstructed signal whose
SNR goes to infinity as the bit rate increases, and they also behave well when the input sig-
nal is noisy or music. In this category we have the scalar waveform coders of Section 7.2,
the frequency-domain coders of Section 7.3, and the CELP coders of Section 7.4.

Low-bit-rate coders, on the other hand, do not attempt to minimize the difference be-
tween the original signal and the quantized signal. Since these coders are designed to operate
at low bit rates, their SNR does not generally approach infinity even if a large bit rate is
used. The objective is to compress the original signal with another one that is perceptually
equivalent. Because of the reliance on an inaccurate model, these low-bit-rate coders often
distort the speech signal even if the parameters are not quantized. In this case, the distortion
can consist of more than quantization noise. Furthermore, these coders are more sensitive to
the presence of noise in the signal, and they do not perform as well on music.
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In Figure 7.9 we compare the MOS of waveform approximating coders and low-bit-
rate coders as a function of the bit rate. CELP uses a model of speech to obtain as much pre-
diction as possible, yet allows for the model not to be exact, and thus is a waveform-
approximating coder. CELP is a robust coder that works reasonably well when the assump-
tion of only a clean speech signal breaks either because of additive noise or because there is
music in the background. Researchers are working on the challenging problem of creating
more scalable coders that offer best performance at all bit rates.

Figure 7.9 Typical subjective performance of waveform-approximating and low-bit-rate cod-
ers as a function of the bit rate. Note that waveform-approximating coders are a better choice
for bit rates higher than about 3 kbps, whereas parametric coders are a better choice for lower
bit rates. The exact cutoff point depends on the specific algorithms compared.

7.5.1. Mixed-Excitation LPC Vocoder

The main weakness of the LPC vocoder is the binary decision between voiced and unvoiced
speech, which results in errors especially for noisy speech and voiced fricatives. By having a
separate voicing decision for each of a number of frequency bands, the performance can be
enhanced significantly [38]. The new proposed U.S. Federal Standard at 2.4 kbps is a Mixed
Excitation Linear Prediction (MELP) LPC vocoder [39], which has a MOS of about 3.3.
This exceeds the quality of the older 4800-bps federal standard 1016 [8] based on CELP.
The bit rate of the proposed standard can be reduced while maintaining the same quality by
jointly quantizing several frames together [57]. A hybrid codec that uses MELP in strongly
voiced regions and CELP in weakly voiced and unvoiced regions [53] has shown to yield
lower bit rates. MELP can also be combined with the waveform interpolation technique of
Section 7.5.3 [50].

7.5.2. Harmonic Coding

Sinusoidal coding decomposes the speech signal [35] or the LP residual signal [48] into a
sum of sinusoids. The case where these sinusoids are harmonically related is of special in-
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terest for speech synthesis (see Chapter 16), so we will concentrate on it in this section, even
though a similar treatment can be followed for the case where the sinusoids are not harmoni-
cally related. In fact, a combination of harmonically related and nonharmonically related
sinusoids can also be used [17]. We show in Section 7.5.2.2 that we don’t need to transmit
the phase of the sinusoids, only the magnitude.

As shown in Chapter 5, a periodic signal ~[ ]s n with period T0 can be expressed as a
sum of T0 harmonic sinusoids

~[ ] cos( )s n A nll l
l

T

� �

�

�

� � �0
0

10

(7.61)

whose frequencies are multiples of the fundamental frequency � �0 02� / T , and where Al

and � l are the sinusoid amplitudes and phases, respectively. If the pitch period T0 has frac-
tional samples, the sum in Eq. (7.61) includes only the integer part of T0 in the summation.
Since a real signal s n[ ] will not be perfectly periodic in general, we have a modeling error

e n s n s n[ ] [ ] ~[ ]� � (7.62)

We can use short-term analysis to estimate these parameters from the input signal s n[ ]
at frame k, in the neighborhood of t kN� , where N is the frame shift:

s n s n w n s n w kN nk k[ ] [ ] [ ] [ ] [ ]� � � (7.63)

if we make the assumption that the sinusoid parameters for frame k (� 0
k , Al

k and � l
k ) are

constant within the frame.
At resynthesis time, there will be discontinuities at unit boundaries, due to the block

processing, unless we specifically smooth the parameters over time. One way of doing this
is with overlap-add method between frames (k – 1) and k:

�[ ] [ ]~ [ ] [ ]~ [ ]s n w n s n w n N s n Nk k
� � � �

�1 (7.64)

where the window w n[ ] must be such that

w n w n N[ ] [ ]� � � 1 (7.65)

to achieve perfect reconstruction. This is the case for the common Hamming and Hanning
windows.

This harmonic model [35] is similar to the classic filterbank, though rather than the
whole spectrum we transmit only the fundamental frequency � 0 and the amplitudes Al and
phases � l of the harmonics. This reduced representation doesn’t result in loss of quality for
a frame shift N that corresponds to 12 ms or less. For unvoiced speech, using a default pitch
of 100 Hz results in acceptable quality.

7.5.2.1. Parameter Estimation

For simplicity in the calculations, let’s define ~[ ]s n as a sum of complex exponentials
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~[ ] exp{ ( )}s n A j nll l
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and perform short-time Fourier transform with a window w n[ ]
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where W( )� is the Fourier transform of the window function. The goal is to estimate the
sinusoid parameters as those that minimize the squared error:

E S SW� �| ( )
~

( )|� �
2 (7.68)

If the main lobes of the analysis window do not overlap, we can estimate the phases � l

as

� �l S l� arg ( )0 (7.69)

and the amplitudes Al as
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For example, the Fourier transform of a (2N + 1) point rectangular window centered
around the origin is given by

W
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b g
b g (7.71)

whose main lobes will not overlap in Eq. (7.67) if 2 2 10T N� � : i.e., the window contains at
least two pitch periods. The implicit assumption in the estimates of Eqs. (7.69) and (7.70) is
that there is no spectral leakage, but a rectangular window does have significant spectral
leakage, so a different window is often used in practice. For windows such as Hanning or
Hamming, which reduce the leakage significantly, it has been found experimentally that
these estimates are correct if the window contains at least two and a half pitch periods.

Typically, the window is centered around 0 (nonzero in the interval � � �N n N ) to
avoid numerical errors in estimating the phases.

Another implicit assumption in Eqs. (7.69) and (7.70) is that we know the fundamental
frequency � 0 ahead of time. Since, in practice, this is not the case, we can estimate it as the
one which minimizes Eq. (7.68). This pitch-estimation method can generate pitch doubling
or tripling when a harmonic falls within a formant that accounts for the majority of the sig-
nal’s energy.

Voiced/unvoiced decisions can be computed from the ratio between the energy of the
signal and that of the reconstruction error
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where it has been empirically found that frames with SNR higher than 13 dB are generally
voiced and lower than 4 dB unvoiced. In between, the signal is considered to contain a
mixed excitation. Since speech is not perfectly stationary within the analysis frame, even
noise-free periodic signals will yield finite SNR.

For unvoiced speech, a good assumption is to default to a pitch of 100 Hz. The use of
fewer sinusoids leads to perceptual artifacts.

Improved quality can be achieved by using an analysis-by-synthesis framework [17,
34] since the closed-loop estimation is more robust to pitch-estimation and voicing decision
errors.

7.5.2.2. Phase Modeling

An impulse train e[n], a periodic excitation, can be expressed as a sum of complex exponen-
tials
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which, if passed through a filter H A( ) ( ) exp ( )� � �� � , will generate
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Comparing Eq. (7.66) with (7.74), the phases of our sinusoidal model are given by

� � �l n l l� � �0 0 0�( ) (7.75)

Since the sinusoidal model has too many parameters to lead to low-rate coding, a
common technique is to not encode the phases. In Chapter 6 we show that if a system is con-
sidered minimum phase, the phases can be uniquely recovered from knowledge of the mag-
nitude spectrum.

The magnitude spectrum is known at the pitch harmonics, and the remaining values
can be filled in by interpolation: e.g., linear or cubic splines [36]. This interpolated magni-
tude spectrum can be approximated through the real cepstrum:
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2 (7.76)

and the phase, assuming a minimum phase system, is given by
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The phase � 0 ( )t of the first harmonic between frames (k – 1) and k can be obtained
from the instantaneous frequency � 0 ( )t
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if we assume the frequency � 0 ( )t in that region to vary linearly between frames (k – 1) and
k:
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and insert Eq. (7.79) into (7.78), evaluating at t kN� , to obtain

� � � � �0 0 0 0
1

01 2k k kkN k N N� � � � �
�( ) (( ) ) ( )( / ) (7.80)

the phase of the sinusoid at � 0 as a function of the fundamental frequencies at frames (k –
1), k and the phase at frame (k – 1):

� � �l
k k kl l� �� ( )0 0 (7.81)

The phases computed by Eqs. (7.80) and (7.81) are a good approximation in practice
for perfectly voiced sounds. For unvoiced sounds, random phases are needed, or else the
reconstructed speech sounds buzzy. Voiced fricatives and many voiced sounds have an aspi-
ration component, so that a mixed excitation is needed to represent them. In these cases, the
source is split into different frequency bands and each band is classified as either voiced or
unvoiced. Sinusoids in voiced bands use the phases described above, whereas sinusoids in
unvoiced bands have random phases.

7.5.2.3. Parameter Quantization

To quantize the sinusoid amplitudes, we can use an LPC fitting and then quantize the line
spectral frequencies. Also we can do a cepstral fit and quantize the cepstral coefficients. To
be more effective, a mel scale should be used.

While these approaches help in reducing the number of parameters and in quantizing
those parameters, they are not the most effective way of quantizing the sinusoid amplitudes.
A technique called Variable-Dimension Vector Quantization (VDVQ) [12] has been devised
to address this. Each codebook vector ci has a fixed dimension N determined by the length
of the FFT used. The vector of sinusoid amplitudes A has a dimension l that depends on the
number of harmonics and thus the pitch of the current frame. To compute the distance be-
tween A and ci , the codebook vectors are resampled to a size l and the distance is computed
between two vectors of dimension l. Euclidean distance of the log-amplitudes is often used.
In this method, only the distance at the harmonics is evaluated instead of the distance at the
points in the envelope that are actually not present in the signal. Also, this technique does
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not suffer from inaccuracies of the model used, such as the inability of linear predictive cod-
ing to model nasals.

7.5.3. Waveform Interpolation

The main idea behind waveform interpolation (WI) [29] is that the pitch pulse changes
slowly over time for voiced speech. During voiced segments, the speech signal is nearly
periodic. WI coders can operate as low as 2.4 kbps.

Starting at an arbitrary time instant, it is easy to identify a first pitch cycle x n1[ ], a sec-
ond x n2[ ] , a third x n3[ ] , and so on. We then express our signal x n[ ] as a function of these
pitch cycle waveforms x nm[ ]

x n x n tm m
m

[ ] [ ]� �

���

�

� (7.82)

where P t tm m m� �
�1 is the pitch period at time tm in samples, and the pitch cycle is a win-

dowed version of the input

x n w n x nm m[ ] [ ] [ ]� (7.83)

—for example, with a rectangular window. To transmit the signal in a lossless fashion we
need to transmit all pitch waveforms x nm[ ] .

If the signal is perfectly periodic, we need to transmit only one pitch waveform x nm[ ]

and the pitch period P. In practice, voiced signals are not perfectly periodic, so that we need
to transmit more than just one pitch waveform. On the other hand, voiced speech is nearly
periodic, and consecutive pitch waveforms are very similar. Thus, we probably do not need
to transmit all, and we could send every other pitch waveform, for example.

It is convenient to define a two-dimensional surface u n l[ , ] (shown in Figure 7.10) such
that the pitch waveform x nm[ ] can be obtained as

x n u n tm m[ ] [ , ]� (7.84)

so that u n l[ , ] is defined for l tm� , with the remaining points been computed through interpo-
lation. A frequency representation of the pitch cycle can also be used instead of the time
pitch cycle.

This surface can then be sampled at regular time intervals l sT� . It has been shown
empirically that transmitting the pitch waveform x ns[ ] about 40 times per second (a 25-ms
interval is equivalent to T = 200 samples for an 8000 HzsF = sampling rate) is sufficient

for voiced speech. The so-called slowly evolving waveform (SEW) ~[ , ]u n l can be generated
by low-pass filtering u n l[ , ] along the l-axis:

x n u n sT
h sT t u n t

h sT ts

m m
m

m
m

[ ] ~[ , ]
[ ] [ , ]

[ ]
� �

�

�

�

�
(7.85)
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where h n[ ] is a low-pass filter and x ns[ ] is a sampled version of ~[ , ]u n l .

Figure 7.10 LP residual signal and its associated surface ( , )u t φ . In the φ axis we have a
normalized pitch pulse at every given time t. Decomposition of the surface into a slowly evolv-
ing waveform and a rapidly evolving waveform (After Kleijn [30], reprinted by permission of
IEEE).



Low-Bit Rate Speech Coders 367

The decoder has to reconstruct each pitch waveform x nm[ ] from the SEW x ns[ ] by in-
terpolation between adjacent pitch waveforms, and thus the name waveform interpolation
(WI) coding:

~ [ ] ~[ , ]
[ ] [ ]
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h t sT w n

h t sTm m

m s
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If the sampling period is larger than the local pitch period (T Pm� ), perfect reconstruc-
tion will not be possible, and there will be some error in the approximation

x n x n x nm m m[ ] ~ [ ] � [ ]� � (7.87)

or alternatively in the two-dimensional representation

u n l u n l u n l[ , ] ~[ , ] �[ , ]� � (7.88)

where � [ ]x nm and �[ , ]u n l represent the rapidly evolving waveforms (REW).
Since this technique can also be applied to unvoiced speech, where the concept of

pitch waveform doesn’t make sense, the more general term characteristic waveform is used
instead. For unvoiced speech, an arbitrary period of around 100 Hz can be used.

For voiced speech, we expect the rapidly varying waveform �[ , ]u n l in Eq. (7.88) to
have much less energy than the slowly evolving waveform ~[ , ]u n l . For unvoiced speech the
converse is true: �[ , ]u n l has more energy than ~[ , ]u n l . For voiced fricatives, both components
may be comparable and thus we want to transmit both.

In Eqs. (7.85) and (7.86) we need to average characteristic waveforms that have, in
general, different lengths. To handle this, all characteristic waveforms are typically normal-
ized in length prior to the averaging operation. This length normalization is done by padding
with zeros x nm[ ] to a certain length M, or truncating x nm[ ] if P Mm � . Another possible nor-
malization is done via linear resampling. This decomposition is shown in Figure 7.10.

Another representation uses the Fourier transform of x nm[ ] . This case is related to the
harmonic model of Section 7.5.2. In the harmonic model, a relatively long window is needed
to average the several pitch waveforms within the window, whereas this waveform interpo-
lation method has higher time resolution. In constructing the characteristic waveforms we
have implicitly used a rectangular window of length one pitch period, but other windows can
be used, such as a Hanning window that covers two pitch periods. This frequency-domain
representation offers advantages in coding both the SEW and the REW, because properties
of the human auditory system can help reduce the bit rate. This decomposition is often done
on the LPC residual signal.

In particular, the REW �[ , ]u n l has the characteristics for noise, and as such only a rough
description of its power spectral density is needed. At the decoder, random noise is gener-
ated with the transmitted power spectrum. The spectrum of �[ , ]u n l can be vector quantized to
as few as eight shapes with little or no degradation.

The SEW ~[ , ]u n l is more important perceptually, and for high quality the whole shape
needs to be transmitted. Higher accuracy is desired at lower frequencies so that a perceptual
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frequency scale (mel or Bark) is often used. Since the magnitude of ~[ , ]u n l is perceptually
more important than the phase, for low bit rates the phase of the SEW is not transmitted. The
magnitude spectrum can be quantized with the VDVQ described in Section 7.5.2.3.

To obtain the characteristic waveforms, the pitch needs to be computed. We can find
the pitch period such that the energy of the REW is minimized. To do this we use the ap-
proaches described in Chapter 6. Figure 7.11 shows a block diagram of the encoder and
Figure 7.12 of the decoder.

Figure 7.11 Block diagram of the WI encoder.

Figure 7.12 Block diagram of the WI decoder.

Parameter estimation using an analysis-by-synthesis framework [21] can yield better
results than the open-loop estimation described above.
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7.6. HISTORICAL PERSPECTIVE AND FURTHER READING

This chapter is only an introduction to speech and audio coding technologies. The reader is
referred to [27, 32, 41, 52] for coverage in greater depth. A good source of the history of
speech coding can be found in [20].

In 1939, Homer Dudley of AT&T Bell Labs first proposed the channel vocoder [15],
the first analysis-by-synthesis system. This vocoder analyzed slowly varying parameters for
both the excitation and the spectral envelope. Dudley thought of the advantages of band-
width compression and information encryption long before the advent of digital communica-
tions.

PCM was first conceived in 1937 by Alex Reeves at the Paris Laboratories of AT&T,
and it started to be deployed in the United States Public Switched Telephone Network in
1962. The digital compact disc, invented in the late 1960s by James T. Russell and intro-
duced commercially in 1984, also uses PCM as coding standard. The use of µ-law encoding
was proposed by Smith [51] in 1957, but it wasn’t standardized for telephone networks
(G.711) until 1972. In 1952, Schouten et al. [47] proposed delta modulation and Cutler [11]
invented differential PCM. ADPCM was developed by Barnwell [6] in 1974.

Speech coding underwent a fundamental change with the development of linear pre-
dictive coding in the early 1970s. Atal [3] proposed the LPC vocoder in 1971, and then
CELP [5] in 1984. The majority of coding standards for speech signals today use a variation
on CELP.

Sinusoidal coding [35] and waveform interpolation [29] were developed in 1986 and
1991, respectively, for low-bit-rate telephone speech. Transform coders such as MP3 [23],
MPEG II, and Perceptual Audio Coder (PAC) [28] have been used primarily in audio coding
for high-fidelity applications.

Recently, researchers have been improving the technology for cellular communica-
tions by trading off source coding and channel coding. For poor channels more bits are allo-
cated to channel coding and fewer to source coding to reduce dropped calls. Scalable coders
that have different layers with increased level of precision, or bandwidth, are also of great
interest.
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