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STEADY SOLUTIONS FOR FIFO NETWORKS

K. KHANIN, D. KHMELEV, A. RYBKO, AND A. VLADIMIROV

Dedicated to Robert Minlos on the occasion of his 70th birthday

Abstract. We consider the fluid model of a reentrant line with FIFO
discipline and look for solutions with constant flows (steady solutions).
In the case of constant viscosities we prove the uniqueness of such a
solution. If viscosities are different, we present an example with multiple
steady solutions. We also prove that for some classes of reentrant lines
uniqueness holds even if the viscosities are different.
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1. Introduction

In this paper we study multi-class networks with the FIFO serving discipline.
We consider deterministic fluid models and look for solutions with stationary flows
(steady solutions). The class of such solutions is the same for some other disciplines
in multi-class networks like LIFO or processor sharing.

Fluid limits and fluid models for queueing networks were first introduced in [9].
A similar scaling for stochastic processes of different kind (random walks in finite-
dimensional positive orthants) was studied by V. A. Malyshev and his coauthors,
see references in the review [7]. Analogous deterministic discrete models were also
studied in [6].

Trajectories of a fluid model are solutions of a complicated system of functional
equations with delay in the space of monotone Lipschitz continuous vector-functions
(see [4, 10]). This system of equations can be derived from the Euler limit for the
stochastic process which describes the evolution of a queueing network in time. The
whole construction allows one to prove the convergence of stochastic processes to
the limiting fluid dynamics. Note that the system of fluid equations also depends
on “excessive” variables (vanishing in the Euler scaling). These variables provide
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the same phase space for both stochastic and limiting deterministic dynamics (see,
for instance, [8]).

In [9] the fluid dynamics formalism was developed in order to obtain ergodicity
conditions for original stochastic processes in terms of the behavior of the limiting
fluid trajectories. The fluid behavior was found to be highly nontrivial. Surpris-
ingly, the ergodicity conditions happened to be quite different from naive “common
sense” expectations that the system is ergodic whenever the workload at each node
is less than 1 (see [6], [9] for the first counterexamples and [1, 2] for those in the
FIFO context). This phenomenon is closely related to the nonuniqueness of tra-
jectories for fluid dynamics and self-similarity of fluid trajectories (see [10, 8]). In
examples mentioned above, it follows from self-similarity that there exist infinitely
many nontrivial solutions with zero initial conditions (the empty state of the queue-
ing system). Moreover, for all these fluid trajectories the set of non-empty nodes
is switched infinitely often in any finite neighbourhood of t = 0. Below we refer
to such complicated behavior as turbulent-like. Let us also mention the study by
V. A. Malyshev [7] of similar bifurcation phenomena for limiting trajectories in the
Euler scaling in the case of random walks in finite-dimensional positive orthants.

To the best of our knowledge, the question of uniqueness of a solution is open
for all nontrivial fluid models with infinite-dimensional state space (like the space
of Lipschitz functions in the FIFO case, in contrast to networks with priority dis-
ciplines and Jackson networks for which the phase space is finite-dimensional). In
this paper we consider the simplest fluid trajectories with constant flow rates for all
types of fluid originating from the empty state of the network (steady solutions).

J1 J2 J3

1 2 3

4

5

67

8

Figure 1. An example of reentrant line

Let us begin with a single reentrant line with K nodes. Such a line is char-
acterized by a partition of a finite set {1, . . . , n} of fluid classes into K disjoint
subsets Ji = {ji1, . . . , jini} (nodes), see Fig. 1. Denote by i(j) the index i such
that j ∈ Ji. The maximal service capacities of nodes are given implicitely by the
vector (v1, . . . , vn) of positive numbers (mean serving times or viscosities). The
prelimiting random process describes a queueing network consisting of K FIFO
queues.
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Customer arrivals at the network are described by the stationary metrically
transitive flow with average interarrival times equal to 1. Each customer is served
in n stages. On the jth stage the customer joins queue i(j) and its mean service
time (the mean time during which the customer is the first in the queue) is equal to
vj . We say that this customer is of class j until it is served at the station i(j) and
joins the next queue i(j) (which may, incidentally, be the same queue) or leaves
the network forever if j = n. We say that the reentrant line is of Kelly type if the
mean service time at node i does not depend on j ∈ J(i), i.e., vj = Vi for all j ∈ Ji,
i = 1, . . . , K.

A steady solution is described by an (n+ 1)-vector x = (x0, x1, . . . , xn), where
xj , j = 1, . . . , n − 1 is the rate of flow leaving class j and joining class j + 1 or
leaving the network forever if j = n. The vector x must satisfy the conditions

(1) x0 = 1,
(2)

∑
j∈Ji xjvj ≤ 1, i = 1, . . . , K.

(3) xs max
{

1,
∑
j∈Ji xj−1vj

}
= xs−1 for all s ∈ Ji, i = 1, . . . , K.

(1.1)

The value of x0 is the exogenous inflow. Condition (2) gives the service capacity
restriction on the outcoming flow from node i. Condition (3) says that an equal
fraction of each incoming flow to any class of node i passes through to the next
class. This is a result of the FIFO discipline at the node and of the steadiness of
the solution.

Notice that the same condition also holds in the case of some other disciplines in
multi-class networks, like LIFO or processor sharing. Conditions (1.1) are derived
from the more general ones

(1̃) x̃0 > 0 arbitrary,
(2̃)

∑
j∈Ji x̃j ṽj ≤ ci, i = 1, . . . , K.

(3̃) x̃s max
{
ci,
∑
j∈Ji x̃j−1ṽj

}
= x̃s−1 for all s ∈ Ji, i = 1, . . . , K.

by the rescaling xj = x̃j/x̃0 and vj = ṽj x̃0/ci(j).
Note that, if ∑

j∈Ji

vj < 1, (1.2)

for any node Ji, i = 1, . . . , K, then there exists a unique trivial steady solution
xj ≡ 1 for j = 1, . . . , n. It is also known (see [3]) that if (1.2) holds, then, for a
reentrant line of Kelly type and for any initial state of fluid, the total amount of
fluid in the network vanishes in finite time.

The main theorem of this paper asserts that in the case of reentrant lines of
Kelly type there exists a unique steady solution for any steady input without re-
striction (1.2). Let us notice that for solutions that are not necessary steady the
question of uniqueness remains open. We conjecture that for reentrant lines of
Kelly type the uniqueness of fluid trajectories persists in the general nonsteady
case. On the contrary, in the case of different viscosities and more than one node,
it is possible to have multiple steady solutions as Example 2.6 demonstrates.
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As we have mentioned above, there might exist many nonstationary trajecto-
ries originating at the same initial state of the network. However, the nonunique-
ness of steady solutions is a new and unexpected phenomenon. This fact implies
the existence of even more complicated singularities of fluid trajectories than the
turbulent-like examples mentioned above.

In Section 2 we introduce and study special dynamical systems (mappings) that
arise naturally from the model presented above. Fixed points of these mappings
correspond to steady solutions of the corresponding reentrant lines. We present an
example of nonuniqueness of a steady state for a general reentrant line and prove
other particular results for general reentrant lines. In Section 3 the uniqueness
theorem for networks of Kelly type is proved (Main Theorem).

2. Dynamical systems

Let us define a mapping M : Rn+ → R
n
+ by the following rule: M : (x1, . . . , xn)→

(x̃1, . . . , x̃n), where

x̃s =
xs−1

max
{

1,
∑
j∈Ji xj−1vj

} for s ∈ Ji, i = 1, . . . , K,

and x0 = 1. Clearly x ∈ Rn+ satisfies (1.1) iff Mx = x. Hence, the question of
existence and uniqueness of a steady solution (1.1) can be reduced to the analysis
of fixed points of the mapping M .

The image MRn+ belongs to the compact convex set

X =
{
x ∈ Rn+ :

∑
j∈Ji

vjxj ≤ 1, i = 1, . . . , K
}
.

Since M is continuous, the Brouwer principle immediately implies the following
lemma.

Lemma 2.1. There exists an x ∈ X ⊂ Rn+ such that Mx = x.

We say that the node i is overloaded if
∑
j∈Ji xj−1vj > 1. In this case, the

queue length at the node i increases linearly in time. Notice that if all nodes are
overloaded, then any steady solution of the reentrant line is a fixed point of the
mapping N : xi → x̃i, where x0 = 1 and

x̃s =
xs−1∑

j∈Ji xj−1vj
for s ∈ Ji, i = 1, . . . , K. (2.3)

The mapping N is well defined for all x ∈ Rn+, x > 0.

Lemma 2.2. Let v∗ = mins=1,...,n vs, v∗ = maxs=1,...,n vs and

Y =
{
x ∈ Rn+ :

∑
j∈Ji

xjvj = 1, xs ≥
( v∗
nv∗

)s
, i = 1, . . . , K, s = 1, . . . n

}
.

Then NY ⊂ Y and Nn+1x ∈ Y for any x ∈ Rn+, x > 0.
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Proof. Notice that for any x ∈ Y we have x ≤ (1/v∗, . . . , 1/v∗)T . Therefore, if
x̃ = Nx then

x̃s =
xs−1∑

j∈Ji(s) xj−1vj
≥ (v∗/nv∗)s−1

(1/v∗)
∑
j∈Ji(s) vj

≥ (v∗/nv∗)s−1

nv∗/v∗
=
( v∗
nv∗

)s
(2.4)

(since x0 = 1, estimate (2.4) holds for s = 1). Hence, NY ⊂ Y , as required. Let

Y0 =
{
x ∈ Rn+ :

∑
j∈Ji

xjvj = 1, i = 1, . . . , K
}
,

Yl =
{
x ∈ Rn+ :

∑
j∈Ji

xjvj = 1, xs ≥
( v∗
nv∗

)s
, i = 1, . . . , K, s = 1, . . . , l

}
.

Notice that Nx ∈ Y0 for any x ∈ Rn+, x > 0, and for any x ∈ Y0 we have, again,
x ≤ (1/v∗, . . . , 1/v∗)T . Using estimate (2.4), we get NYl ⊂ Yl+1. Therefore,
Nn+1x ∈ Yn = Y . �

Since Y is compact and convex and N is continuous on Y , we can apply the
Brouwer principle once more. Hence, the following lemma holds.

Lemma 2.3. There exists an x ∈ Y ⊂ Rn+ such that Nx = x.

It is easy to see that any fixed point of the mapping N satisfies a system of K
equations.

Lemma 2.4. For any x = Nx we have

x = (x(1, a), . . . , x(n, a))T ,

where a = (a1, . . . , aK), x(0, a) = 1 and x(j, a) = x(j − 1, a)ai(j). The variables
a1, . . . , aK satisfy a system of K equations:∑

j∈Ji

x(j, a)vj = 1.

Proof. Let us denote ai = 1/
(∑

j∈Ji xj−1vj
)
, where x0 = 1. Then, (2.3) implies

that xs = xs−1ai(s) for all s = 1, . . . , n, and hence xj = x(j, a). The system of
equations arises from the conditions

∑
j∈Ji xjvj = 1, see Lemma 2.3. �

The construction of x(j, a) for a reentrant line from Fig. 1 is illustrated in Fig. 2.
An anologous assertion holds for fixed points of the mapping M , but the corre-

sponding system of equations for variables a1, . . . , aK happens to be non-algebraic.

Lemma 2.5. For any x = Mx we have

x = (x(1, a), . . . , x(n, a))T ,

where a = (a1, . . . , aK), x(0, a) = 1, x(j, a) = x(j − 1, a)ai(j) and the variables
a1, . . . , aK ≤ 1 satisfy the following conditions:

(1) if
∑
j∈Ji x(j, a)vj < 1 then ai = 1,

(2) otherwise
∑
j∈Ji x(j, a)vj = 1.
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Figure 2. A fixed point for reentrant line

In the next section we prove that, for a reentrant line of Kelly type, a steady
solution (a fixed point of M) is unique. However, in general, there can exist more
than one steady solution of a reentrant line with arbitrary viscosities. In other
words, mappings M and N can have different fixed points x and x′ for all of
which all the nodes are overloaded, that is ai < 1 and

∑
j∈Ji x(j, a)vj = 1 for all

1 ≤ i ≤ K.

Example 2.6. Let us construct two different overloaded solutions of a line with
K = 2, n = 5, J1 = {1, 2, 5} and J2 = {3, 4}. Any overloaded solution has the
form

x = (a, a2, a2b, a2b2, a3b2), a, b ≥ 0,

and the equalities

v1a+ v2a
2 + v5a

3b2 = 1, v3a
2b+ v4a

2b2 = 1 (2.5)

must hold. Let us choose a = b = 1/2 and a′ = 3/4, b′ = 1/4. Now, it is easy to
find viscosities vj, j = 1, . . . , 5, such that (2.5) holds together with

v1a
′ + v2a

′2 + v5a
′3b′2 = 1, v3a

′2b′ + v4a
′2b′2 = 1. (2.6)

In particular, one can choose

v1 =
15
32
, v2 =

1
144

, v5 =
220
9
, v3 =

56
9
, v4 =

32
9
.

Examples of multiple steady solutions can be constructed on the basis of the
following simple observation.

Lemma 2.7. Let α, β ∈ Rn+, α 6= β, α, β > 0 and n ≥ 2. Then the relations

(w, α) = 1, (w, β) = 1

are consistent with respect to w ∈ Rn+, w > 0 if and only if the vector α − β has
both positive and negative components, that is, if (αi − βi)(αj − βj) < 0 for some
1 ≤ i, j ≤ n.
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In Example 2.6 we have α1 = (a, a2, a3b2)T , β1 = (a′, a′2, a′3b′2)T and the
existence of a required positive vector w1 = (v1, v2, v5)T is ensured by Lemma 2.7,
since the difference vector α1 − β1 = (a − a′, a2 − a′2, a3b2 − a′3b′2)T has both
positive and negative components. The same argument works for α2 = (a2b, a2b2)T ,
β2 = (a′2b′, a′2b′2)T , and w2 = (v3, v4).

Note that in example (2.5)–(2.6) one of the subsets contains three elements. We
show next that, if each subset in the partition of {1, . . . , n} consists of less than 3
elements, then a steady solution is unique. We use the l1-norm ‖x‖ = |x1|+· · ·+|xn|
which induces the matrix norm ‖A‖ = maxj=1,...,n‖Aej‖ on the space of linear
operators A : Rn → R

n, where {ej} are the unit vectors.

Proposition 2.8. Suppose that ni = |Ji| ≤ 2 for all j = 1, . . . , K. Then there
exists a unique positive fixed point x∗ = Nx∗ and there exist λ < 1 and C > 0 such
that ‖Nmx− x‖ ≤ Cλm for all x ∈ Rn+, x > 0, m ∈ N.

Proof. We consider the case of all subsets containing exactly 2 elements. The
proof in the case when some of the subsets are singletons is essentially the same.
By Lemma 2.2, Nn+1x ∈ Y for all x ∈ Rn+, x > 0. Therefore, without loss of
generality we can assume that x ≥ (ε, . . . , ε)T for some ε > 0. Define rs = lnxs.
Then r0 = 0 and

r̃s = rs−1 − ln(vji1e
rji1−1 + vji2e

rji2−1)

for s = ji1, ji2 for all i = 1, . . . , K, where Ji = {ji1, ji2}. Denote by R the mapping
r → r̃. Let us find the Jacobi matrix DR = (∂r̃s/∂rk):

∂r̃s
∂rk

=



0, s ∈ Ji, k 6= ji1 − 1, ji2 − 1,{
1− αji1 , s = ji1,

−αji1 , s = ji2,
k = ji1 − 1,{

−αji2 , s = ji1,

1− αji2 , s = ji2,
k = ji2 − 1,

where
αs =

vse
rs−1

vji1e
rji1−1 + vji2e

rji2−1
, s ∈ Ji, i = 1, . . . , K.

Clearly, αs ≤ 1. One easily sees that, for any ei and r, the inequality ‖DR(r)ei‖ ≤ 1
holds. Therefore, for any r1, r2 we have

‖Rr2 −Rr1‖ =
∥∥∥∥∫ 1

0

DR(γ(s))γ′(s) ds
∥∥∥∥ ≤ ‖r2 − r1‖, (2.7)

where γ(s) = (1− s)r1 + sr2.
Let x∗ = Nx∗ be a fixed point of N. Then the vector r∗ with components

r∗i = lnx∗i is a fixed point for R. Let P = |DR(r∗)|T , where | · | is applied to DR
component-wise and T denotes transposition. Then P is a transition matrix for a
finite Markov chain with states {1, . . . , n} which terminates on hitting the state n,
i.e., the row corresponding to the state n consists of zeros. Since the state n is
absorbing, the spectral radius of P is strictly less than 1. Hence, the spectral radius
of DR(r∗) is also strictly less than one. Therefore, r∗ is locally stable and attracts
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with exponential rate all points from some neighbourhood of r∗. This together
with (2.7) implies that r∗ attracts all r ∈ lnY with exponential rate uniformly in
r ∈ lnY . Since Rn+1r ∈ lnY for any r ∈ Rn, the uniform exponential convergence
takes place for all r ∈ Rn as required.

If ni = 2 not for all i, then one can still show that (2.7) holds. Furthermore, in
this case the corresponding Markov chain with transition matrix P = |DR(r∗)|T
has more than one absorbing state. Hence, all the above arguments hold and there
is the global convergence to a unique stationary point r∗. �

An analogous assertion holds for the mapping M .

Proposition 2.9. Suppose that ni = |Ji| ≤ 2 for all j = 1, . . . , K. Then there
exists a unique fixed point x∗ = Mx∗ and there exist λ < 1 and C > 0 such that
‖Mmx− x‖ ≤ Cλm for all x ∈ Rn+, m ∈ N.

Proof. We give only a sketch of the proof. Again, consider the case of all subsets
containing exactly 2 elements. As in the proof of Proposition 2.8, we pass to the
logarithmic coordinates r = lnx. Notice that one can represent R : r → r̃ as the
composition R = LS, where S is a shift operator

S(r1, . . . , rn) = (0, r1, . . . , rn−1)

and L is the normalization operator which acts on each node Ji independently of
other nodes:

L(a, b) =

{
(a, b), if W = vae

a + vbe
b ≤ 1,

(a−W, b−W ), if W = vae
a + vbe

b > 1,

where (a, b) = (rji1−1, rji2−1). Let us denote

Ω≤ = {(a, b) : vaea + vbe
b ≤ 1} and Ω> = {(a, b) : vaea + vbe

b > 1}.

It is easy to see that Ω≤ is a convex domain. Denote by m1 = (a1, b1) and m2 =
(a2, b2) two points in R2. Clearly, if m1, m2 ∈ Ω≤, then Lm1 = m1, Lm2 = m2

and ‖Lm2 − Lm1‖ = ‖m2 − m1‖. If m1 ∈ Ω≤, m2 ∈ Ω>, then the interval
γ(s) = (1 − s)m1 + sm2, 0 ≤ s ≤ 1 meets ∂Ω≤ at a single point m3. Notice that
an open interval with endpoints m2, m3 belongs to Ω>. Similarly to (2.7) we have
‖Lm2 − Lm3‖ ≤ ‖m2 −m3‖. Therefore,

‖Lm2 − Lm1‖ ≤ ‖Lm2 − Lm3‖+ ‖Lm3 − Lm1‖
≤ ‖m2 −m3‖+ ‖m3 −m1‖ = ‖m2 −m1‖.

The case m1, m2 ∈ Ω> can be considered analogously. The only difference is
connected with the fact that the interval γ(s) may intersect ∂Ω≤ in two points.
Therefore,

‖Rr2 −Rr1‖ ≤ ‖r2 − r1‖.
The remaining part of the proof is almost the same as for Proposition 2.8. One
needs only to deal carefully with the case when M is not differentiable at the fixed
point r∗. �

The following corollary is an immediate consequence of Proposition 2.9.
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Corollary 2.10. Suppose that ni = |Ji| ≤ 2 for all j = 1, . . . , k. Then there exists
a unique steady solution satisfying (1.1).

We finish this section by the following simple proposition. It shows that the
nonuniqueness example (2.5)–(2.6) is in some sense minimal.

Proposition 2.11. If n ≤ 4 then there exists a unique steady solution of the
reentrant line.

The assertion essentially follows from the previous corollary. One just has to
consider separately three cases where one of the subsets contains 3 elements. It is
easy to check that in all these cases the assertion holds.

3. Reentrant lines of Kelly type

In this section we study reentrant lines of Kelly type ([5], see also Introduction),
that is, we assume

vj = Vi > 0 for all j ∈ Ji, i = 1, . . . , K. (3.8)

Theorem 3.1 (Main Theorem). Let (3.8) hold. Then for any steady input there
exists a unique steady solution of the reentrant line.

Proof. By Lemma 2.1, it suffices to prove the uniqueness of the vector x satisfying
conditions (1.1) from Introduction. Let us consider the cube ¯̄̄Q

¯̄̄Q = {a ∈ RK : 0 ≤ ai ≤ 1, i = 1, . . . , K}
and a vector a ∈ ¯̄̄Q. The component ai, i = 1, . . . , K, will be interpreted as the
ratio of the outcoming flow from node i to its incoming flow. Note that, since only
steady flows are considered, this ratio is the same for any particular class j ∈ Ji,
that is,

xj = ai(j)xj−1, j = 1, . . . , n,
where xj is the rate of the flow leaving class j, cf. Lemma 2.5.

First, let us find the actual rate x(j, a) for a given a ∈ ¯̄̄Q. We set x(0, a) = 1
for each a ∈ ¯̄̄Q and use the recurrent relation

x(j, a) = x(j − 1, a)ai(j)
to define x(j, a), j = 1, . . . , n. Hence, x(j, a) is a monomial of the form

x(j, a) =
∏

i=1,...,K

a
pi(j)
i , j = 0, 1, . . . , n, a ∈ ¯̄̄Q,

where integer-valued functions pi(j) of integer argument j ∈ {0, . . . , n} are defined
by the relations

pi(0) = 0, pi(j) =

{
pi(j − 1) + 1 if j ∈ Ji,
pi(j − 1) otherwise,

for i = 1, . . . , K, j = 1, . . . , n. Let us extend the domain of pi(·) to the real
interval [0, n] setting

pi(j + α) = αpi(j + 1) + (1− α)pi(j), α ∈ [0, 1], j = 0, . . . , n− 1, i = 1, . . . , K.
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The rate of the total outcoming flow from node i is found as

Fi(a) =
∑
j∈Ji

x(j, a), i = 1, . . . , K, a ∈ ¯̄̄Q.

The continuous map F : ¯̄̄Q → R
K
+ , F (a) = (F1(a), . . . , FK(a)) is nondecreasing

with respect to the cone RK+ , i.e., a ≥ b implies F (a) ≥ F (b), where the inequalities
hold component-wise. Let us denote

bi =
1
Vi
.

It is easy to see that any steady solution with x0 = 1 is given by a vector

(x0, x1, . . . , xn) = (1, x(1, a), . . . , x(n, a)),

where a satisfies the conditions

Fi(a) ≤ bi, i = 1, . . . , K, (3.9)

and
(bi − Fi(a))(1− ai) = 0, i = 1, . . . , K. (3.10)

We will prove the uniqueness of such a vector a ∈ ¯̄̄Q which is equivalent to the
assertion of the theorem. Notice that all the components of any steady solution are
strictly positive. It follows that there exists a constant δ > 0 which depends only
on V1, . . . , VK and n such that any vector a corresponding to a steady solution
belongs to the cube

Q = {a ∈ RK : δ ≤ ai ≤ 1, i = 1, . . . , K}.
Let us fix an a ∈ Q and find the Jacobi matrix

DF (a) =
(
∂Fi(a)
∂ak

)
i,k=1,...,K

.

Since, for any j = 1, . . . , n,
∂

∂ak

∏
m=1,...,K

apm(j)
m =

pk(a)
ak

∏
m=1,...,K

apm(j)
m ,

we have
∂Fi(a)
∂ak

=
∑
j∈Ji

∂x(j, a)
∂ak

=
∑
j∈Ji

x(j, a)
ak

pk(j). (3.11)

Let us consider two cases. First, let j ∈ Ji. Since ṗi(t) ≡ 1 and ṗk(t) ≡ 0 for
j − 1 < t ≤ j and k 6= i, we get the following equality:

x(j, a)pk(j) =


∫ j

j−1

x(j, a)pk(t) ṗi(t) dt if i 6= k,∫ j

j−1

x(j, a)pk(t) ṗi(t) dt+
x(j, a)

2
if i = k.

If j 6∈ Ji, then ṗi(t) ≡ 0 for j − 1 < t ≤ j and, hence,∫ j

j−1

x(j, a)pk(t) ṗi(t) dt = 0.



STEADY SOLUTIONS FOR FIFO NETWORKS 417

Therefore, (3.11) can be written as
∂Fi(a)
∂ak

=
1
ak

∫ n

0

x(t, a)pk(t) ṗi(t) dt+ Λik(a), (3.12)

where x(t, a) = x(dte, a) (here dte is the least integer t̄ such that t ≤ t̄) and
Λ(a) = {Λik : 1 ≤ i, k ≤ K} is a positive definite diagonal matrix:

Λ(a) = diag(λ(a)), λ(a) = (λ1(a), . . . , λK(a)),

and λi(a) = 1
2ai

∑
j∈Jix(j, a) = Fi(a)

2ai
> 0 for any a > 0, i = 1, . . . , K.

Let us make the change of variables ri = ln ai, i = 1, . . . , K. This change
transfers the cube Q onto the cube

Q′ = {r ∈ RK : ln δ ≤ ri ≤ 0, i = 1, . . . , K}.

Let us use the notation F̃ (r) = F (a), where ai = eri , i = 1, . . . , n, and note that

∂F̃i(r)
∂rk

= ak
∂Fi(a)
∂ak

where 1 ≤ i, k ≤ K and r = ln a (component-wise). We get

∂F̃i(r)
∂rk

=
∫ n

0

x(t, a)pk(t) ṗi(t) dt+ Λ̃ik(a),

where
Λ̃(r) = diag(λ′(r)), λ′(r) =

(
F̃1(r)

2
, . . . ,

F̃K(r)
2

)
.

It is important for what follows that x(j, a) is a non-increasing positive function
of j for each a ∈ Q. Let us prove that for any vector r ∈ Q′ the Jacobi matrix
DF̃ (r) is positive definite. Notice that

x(t, a) =
n∑
j=1

(x(j, a)− x(j + 1, a))1{t∈(0,j]}, (3.13)

where x(n+ 1, a) ≡ 0 and

1{t∈(0,j]} =

{
1, t ∈ (0, j],
0, t /∈ (0, j].

Using (3.12) and (3.13) we get

〈DF̃ (r)x, x〉 =
K∑
i=1

K∑
k=1

(∫ n

0

x(a, t)pk(t) ṗi(t) dt
)
xk +

K∑
i=1

x2
i F̃i(r)

=
∫ n

0

x(a, t)〈p(t), x〉 d
dt
〈p(t), x〉 dt+

K∑
i=1

x2
i F̃i(r)

=
n∑
j=1

(x(j, a)− x(j + 1, a))
∫ j

0

〈p(t), x〉 d
dt
〈p(t), x〉 dt+

K∑
i=1

x2
i F̃i(r)

=
n∑
j=1

(x(j, a)− x(j + 1, a))
〈p(j), x〉2

2
+

K∑
i=1

x2
i F̃i(r) > 0 (3.14)
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for any x ∈ RK , x 6= 0.
Now, it is easy to prove that

〈F̃ (r′)− F̃ (r), r′ − r〉 > 0 (3.15)

whenever r, r′ ∈ Q′ and r 6= r′. Indeed,

F̃ (r′)− F̃ (r) =
∫ 1

0

DF̃ (γ(s))γ′(s) ds,

where γ(s) = (1− s)r+ sr′ and γ′(s) = r′− r. Since (3.14) holds for all r ∈ Q′ and
Q′ is a convex set, we get

〈F̃ (r′)− F̃ (r), r′ − r〉 =
∫ 1

0

〈DF̃ (γ(s))(r′ − r), r′ − r〉 ds > 0,

as required.
Finally, let us suppose that a and a′, a 6= a′, from Q generate two steady solutions

of the reentrant line. Let r = ln a and r′ = ln a′. Let us demonstrate that

〈F̃ (r′)− F̃ (r), r′ − r〉 ≤ 0

which is a contradiction to (3.15).
It suffices to show that (F̃i(r′)− F̃i(r))(r′i − ri) ≤ 0 for any i = 1, . . . , n. Let us

consider four cases. If F̃i(r′) = bi and F̃i(r) = bi then (F̃i(r′)− F̃i(r))(r′i − ri) = 0.
If F̃i(r′) < bi and F̃i(r) < bi then ai = a′i = 1, hence ri = r′i = 0 and, again,
(F̃i(r′)− F̃i(r))(r′i − ri) = 0. If F̃i(r′) = bi and F̃i(r) < bi then (F̃i(r′)− F̃i(r)) > 0
and ri = 0. Since r′i ≤ 0, we get r′i − ri ≤ 0 and (F̃i(r′)− F̃i(r))(r′i − ri) ≤ 0. The
case F̃i(r′) < bi and F̃i(r) = bi is equivalent to the previous one. �

Remark. Theorem 3.1 can be extended to a more general case of a reentrant line
with additional inflows at each node and a fixed fraction of the flow leaving the
system at each node. It also can be extended to the case of a finite number of
reentrant lines. In this situation one has to concatenate all the reentrant lines into
a single reentrant line and assume that the total flow leaves the system at each
conjunction point and a new flow comes from the outside.

We thank M. Blank, V. Kleptsyn and S. Fomin for helpful discussions.
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