Chapter 2
Overview of PC-KIMMO Version 2

Last modified November 22, 1995

2.1 What's new in version 2

2.2 A sample session using the word grammar component

Using the Synthesizer function

2.3 Changesto the rules component
2.4 Changesto the lexical component
2.5 Changesto the user interface
Figure 2.1 A morphological parsetree
Figure 2.2 Feature structure

Figure 2.3 A word grammar rule

2.1 What's new in version 2

This chapter gives an overview of the new featuresin PC-KIMMO version 2. These include the following:

e The rules component supports multigraphs.

e The rules component is compatible with Xerox's twolc rule compiler.

e Lexical entries have a new encoding format.

e Lexica entriespermit afeatures field.

e A word grammar component has been added.

e A Synthesizer function has been added.

e Theinternal data structures returned by the Recognizer have been enriched.
Of these new features, the word grammar component is the most significant. The word grammar component
uses a unification-based parser based on the PATR-11 formalism described in Shieber 1986. Although parsers
of thistype have typically been used for syntactic analysis, they can aso be used for morphological analysis
with equal success. Just as a sentence parser produces atree structure with words as its leaf nhodes, aword
parser produces atree structure with morphemes as its leaf nodes. For example, figure 2.1 shows a parse tree
of the word unbelievable as produced by PC-KIMMO's word grammar component:

Figure 2.1 A morphologica parsetree

Chapter 2: Overview Page: 1 of 1679847270 Monday, November 27, 1995

St em
PREFI X Stem
un+ |
Stem SUFFI X
| +abl e
ROOT
be'lieve

Each node of the tree has a feature structure associated with it. The feature structure for the top node isthe
most important, since these are the features attributabl e to the entire word. The feature structure for the top
node of the treein figure 2.1 is shown in figure 2.2. It gives three features for the word unbelievable. First,
the feature cat has the value Word, which is simply the name the node. Second the feature pos has the value
AJ, meaning that the lexical category (part-of-speech) of the word is Adjective. And third, the feature aform
has the value POS, meaning that it is the Positive form of the adjective (as opposed to the Comparative -er or
Superlative -est forms). If PC-KIMMO were being called from a syntactic parser, then it would return to the
syntactic parser the word unbelievable with its features.

Figure 2.2 Feature structure

[cat: Wor d
head: [pos: AJ]
aform PGS 1]

The word grammar component uses afile containing a grammar written by the user. A grammar consists of
context-free rules and feature constraints. An example of arule with constraintsis shown in figure 2.3.

Figure 2.3 A word grammar rule

Word = Stem | NFL
<Stem head pos> = <INFL from pos>
<Wrd head> = <I NFL head>

One obvious difference between parsing a sentence and parsing aword is that a sentence istypically already
tokenized into words while aword is not tokenized into morphemes. In other words, we put white space
between words but not between morphemes. In PC-KIMMO, the Recognizer uses the rules and lexicon to
tokenize aword into a sequence of morphemes which in turn is passed to the word grammar component for
parsing. Initsoveral architecture, version 2 of PC-KIMMO now resembles the morphological parser
described in Ritchie and others 1992. That parser also first tokenizes aword into morphemes and then parses
the morpheme sequence with a unification-based parser. However, our unification parser differs considerably
from theirsin itsimplementation.

There are severa reasons why we added aword grammar component to PC-KIMMO.
The word grammar component offers a more powerful model of morphotactics.

PC-KIMMO version 1 used only the continuation class model of morphotactics which was used in
Koskennniemi's original model (1983). In the continuation class model, the morphotactic properties of a
morpheme can be stated only in terms of the classes of morphemes that can directly follow it in aword. This
meant that it was very difficult or at least practically unfeasible to enforce certain discontinuous dependencies
between morphemes. The word grammar, however, has the entire power of a context-free grammar at its
disposal and can model word structure as arbitrarily complex branching trees (both left- and right-branching).
The practical result isthat with PC-KIMMO version 2 you can eliminate most of the bad parses that were so
difficult to prevent with version 1.

The word grammar component can deduce the lexical category (part-of-speech) of a word.

Chapter 2: Overview Page: 2 of 1679847270 Monday, November 27, 1995

PC-KIMMO version 1 could break aword into its morphemes and gloss each morpheme, but it could not tell
you the category of the whole word. For example, given the word computerization, version 1 would return
thisanalysis:

com put e+er +i ze+at i on com put e+NR19+VR6+NR23

The original word has been broken into four morphemes with glosses, but there is no indication that the whole
word isanoun. This deficiency made PC-KIMMO less useable as afront-end to a syntactic parser, since a
syntactic parser must know the category of each word. In version 2, the feature-passing mechanism can be
used to determine the lexical category of aword.

The word grammar component can provide a full feature specification for a word.

Besideslexical category, aword grammar can also determine all features of aword that are relevant to syntactic
parsing, such as tense, number, gender, and case.

2.2 A sample session using the word grammar component

For instructions on installing and starting up PC-KIMMO, see section 5. For this sample session, we will use
the English description called Englex, which accompanies the version 2 release. This description include a
rulesfile, alexicon file, and agrammar file. To load thesefiles, start up PC-KIMMO and type take englex.

Y our screen should look like this:

PC- KI MO TWO- LEVEL PROCESSOR

Version 2.0 (Decenber 15, 1994), Copyright 1994 SIL
Type ? for help

PC- KI MMO>t ake engl ex

PC- KI MMO>| oad rul es english

Loadi ng rules from english. rul

PC- KI MMO>| oad | exi con english

Loadi ng | exicon fromenglish.Iex

PC- KI MMO>

Therulesfile and the lexicon file have now been loaded, but not the grammar file. This demonstrates that use
of the word grammar component is optional. If you do not use it, then PC-KIMMO will behave just asit did in
version 1. Thusyou can use version 2 with your existing descriptions without having to write grammar files
(however, you must convert your existing lexicon files to the new format required by version 2). To try the
Recognizer without the word grammar, just type some recognize commands:

PC- KI MMO>r ecogni ze f oxes

“f ox+s “f ox+PL
" f ox+s " f ox+3SG
PC- KI MMO>

Two results were returned for the word foxes. The two results are due to two analyses of the suffix +s, one
the plural suffix for nouns, the other the third, singular suffix for verbs. Obviously our knowledge of English
tellsusthat thefirst result is correct and the second is incorrect. The point to note here is that the lexicon
constructed for this example does not have sufficient morphotatic constraints to disallow the incorrect analysis.
Thereisanew display option that displays the results of the Recognizer in an interlinear format. Type set
alignment on and thenrec foxes again:

PC- KI MO>set al i gnnent on
PC- KI MMO>r ec f oxes
“fox +s

Chapter 2: Overview Page: 3 of 1679847270 Monday, November 27, 1995

“fox +PL
N | NFL

“fox +s
“fox +3SG
N | NFL

Thisdisplay vertically aligns each morpheme of the lexical form with its gloss on the second line and its
sublexicon name on the third line. Thus we can visually see that each Recognizer result is a sequence of
morpheme structures. Not shown in this display, though present internally, are the features associated with
each morpheme. Now load the English word grammar and try recognizing the same word again. Type load
grammar english and thenrec foxes (features with empty values are not displayed):

PC- KI MMO>| oad grammar engli sh
Loadi ng grammar from english. grm

PC- KI MMO>r ec f oxes
“fox +s

“fox +PL

N | NFL

| +s

" f ox
" f ox

Vord
[cat: Wor d
clitic:-
head: [nunber: PL
pos: N]
root _pos: N
root: “fox]

One important difference isthat now only one result is returned, namely the one that correctly interprets the -s
suffix asaplural marker. What has happened is this.

e First, the input form foxes was analyzed using the rules and lexicon only. This produced the same
two results as first shown above. However, these results are retained internally and not displayed on
the screen.

e Then, each result was passed to the word grammar component. The word grammar accepted the first
result, in which +sisaplural suffix, but rejected the second, in which +sisaverbal suffix. The
rejected result was discarded and only the result that satisfied the grammar was retained and displayed
on the screen.

Thus the lexicon and grammar work together to produce the desired results. The lexicon servesto break a
word into its morphemes using minimal morphotactic constraints, while the grammar applies amore powerful
morphotactic mechanism that filters out any incorrect analyses alowed by the lexicon. The Recognizer result
display consists of three parts. the tokenized lexical form, the parse tree, and the feature structures. The first
part is always displayed, while the other two parts are displayed only if aword grammar isin use and certain
options are turned on. In the display shown above, the first part of the result display isthe same asit was
before the word grammar was loaded (assuming that the alignment option is still on). The second part of the
result display isthe analysis tree. The nodes of the tree bear the category symbols used in the word grammar
rules. The leaf nodes (ROOT and INFL) also display the lexical form and gloss of each morpheme. Thetree

Chapter 2: Overview Page: 4 of 1679847270 Monday, November 27, 1995

option determines how the tree is displayed. In the display above, the tree option is set to full by default. If the
tree option is set to flat, then it would be displayed as a bracketed string like this:

(Word (Stem (ROOT “fox ' “fox'))(INFL +s '+PL'))

Setting the tree option to off will suppress display of the tree entirely. The third part of the result display
consists of feature structures. The features option determines how feature structures are displayed. In the
display shown above, only the feature structure for the top node of the tree is shown because the features
optionisset totop, If it isset to all, then the feature structure for each node of the tree is shown:

Wrd_1:
[cat: Wor d
clitic:-
head: [nunber: PL

pos: N]
root _pos: N
root: “fox]

Stem 2:
[cat: Stem
ajr8: -
head: [nunmber: SG
pos: N
proper: -]
root _pos: N
root: ~fox
reg: +]
ROOT_3:
[cat: ROOT
ajr8: -
gl oss: " fox
head: [nunber: SG
pos: N
proper: -]
root _pos: N
| ex: “fox
reg: +]
I NFL_4:
[cat: I NFL
from pos: N
gl oss: +PL
head: [nunber: PL
pos: N]
| ex: +s
reg: +]

Setting the features option to off will suppress display of feature structures entirely. In the example above
using the word foxes, the lexicon returned two results, one of which was disallowed by the word grammar. In
the next example, the lexicon returns one result which is expanded into three by the grammar. First, turn off
the grammar component by typing set grammar off. This causes the Recognizer to behave just asif no
grammar were loaded. Then type rec deer. One result is displayed.

PC- KI MMO>set granmmar of f
PC- KI MVMO>r ec deer
“deer “deer

Now type set grammar on and rec deer again.

Chapter 2: Overview Page: 5 of 1679847270 Monday, November 27, 1995

PC- KI MMO>set granmmar on
PC- KI MVMO>r ec deer
“deer “deer

1:
wrd 4
I
Stem 5
|
ROOT_6
“deer
“deer

Wor d:
[cat: Wor d
clitic:-

head: [nunber: SG
pos:
proper: - |

root _pos: N
root: “deer]

2:
wrd 1
I
Stem 2
|
ROOT_3
“deer
“deer

Wor d:
[cat: Wor d
clitic:-

head: [nunber: PL
pos:
proper: - |

root _pos: N
root: “deer]

In this display, the single result from the lexicon has been given two analyses by the word grammar. While the
two trees areidentical, the feature structures for the top nodes of the trees differ: for the first tree, the feature
number has the value SG, while for the second it has the value PL. In other words, the grammar has produced
both asingular and a plural form for deer. The next example demonstrates that the prefix un+ has two analyses
(or there are two homophonous prefixes spelled un+). First, the negative un+ asin unclear attachesto
adjectives and negates their meaning. Second, the reversive un+ asin untie attaches to verbs and reverses their
action. A word such asunlockable is has two readings due to the ambiguity of the un+ prefix: either "not
lockable" or "can be unlocked.” To see how the word grammar distinguishes these reading, type rec

unlockable:

PC- KI MMO>r ec unl ockabl e
NEA+' | ock+AJR25a

un+ | ock+abl e

1:
Wor d

PREFI X Stem

un+

NEGA+ Stem SUFFI X

Chapter 2: Overview

Page: 6 of 1679847270

Monday, November 27, 1995

| +abl e
ROOT +AJR25a

"1 ock
"1 ock
Vor d:
[cat: Wor d
clitic:-
head: [aform POCS
pos: Al]
root _pos:V
root: “lock]
un+" | ock+abl e REV1+' | ock+AJR25a
1:
Word
I
Stem
_____ S
Stem SUFFI X
_______ +abl e
PREFI X Stem +AJR25a
un+ |
REV1+ ROOT
"1 ock
"1 ock
Vor d:
[cat: Wor d
clitic:-
head: [aform POCS
pos: Al]
root _pos:V
root: “lock]

The two trees show how the two reading are produced. In the first tree, the negative un+ attachesto the
adjective lockable to give the reading "not lockable." In the second tree, the reversive un+ first attaches to the
verb lock to produce unlock, which in turn is suffixed with +able to give the reading "can be unlocked."
Notice, however, that both trees have the same feature structure for their top nodes; in other words,
unlockable is an adjective in either reading.

Using the Synthesizer function

The Synthesizer function accepts as input a morphological form (a sequence of morpheme glosses separated
by spaces) and returns one or more surface forms. In order to synthesize forms, you must first load a
synthesislexicon. This can be the same lexicon that you use for recognition, but it must be loaded again asa
synthesis lexicon. Y ou can have both arecognition lexicon and a synthesis lexicon loaded at the sametime.
They may or may not be the same lexicon. It is not necessary to load a recognition lexicon to synthesize forms.
A rulesfile must be loaded before a synthesis lexicon can be loaded. Use of agrammar fileis optional.

To try the Synthesizer function, first load the Englex lexicon as a synthesis lexicon (Macintosh users may first
need to increase PC-KIMMQO's memory partition):

PC- KI MMO>l oad synt hesi s-1 exi con english
Loadi ng synt hesi s-1exicon fromenglish.|ex

Now use the synthesi ze command with these morphological forms:

Chapter 2: Overview Page: 7 of 1679847270 Monday, November 27, 1995

PC- KI MO>synt hesi ze REV1+ “lock +AJR25a
unl ockabl e

PC- KI MMO>syn NEGXA+ “tie +ING
unt yi ng

PC-KI MMO>syn “fox +PL +GEN
f oxes'

PC- KI MO>syn ~“fox +3SG
* % % '\IO\'E * % %

PC- KI MO>set granmmar of f

PC- KI MO>syn “fox +3SG
f oxes

PC- KI MMO>r ec f oxes
“fox fox+PL
“fox " fox+3SG

When the grammar is used, the form “fox +3SG is rejected, since the grammar prohibits averbal suffix on a
noun. When the grammar is turned off, then the surface form foxes is returned, since thisis permitted by the
lexicon; thisis demonstrated by recognizing the form foxes with the grammar off.

2.3 Changesto the rules component

2.3.1 Comment character declaration

In version 1, the comment character could be set either with acommand line option (-c) or with the command
set comment. In version 2 the comment character is declared in the rules file with the new COMMENT
keyword. For example, this declaration sets the comment character to %:

COWMENT %

2.3.2 Support for multigraphs

Inversion 1, the alphabet declared in arulesfile was restricted to single characters. In version 2, the a phabet
can also include multigraphs--digraphs, trigraphs, and so on. For example, a description of Spanish would
include the digraph Il in the list of aphabetic characters declared in the rulesfile. The digraph |l could then be
used in the column header of a state table or in a SUBSET declaration. It isimportant to understand that a
multigraph can never be interpreted as a sequence of characters. For example, the alphabet for a Spanish

description will include both | and I1; but I will always be treated as a multigraph, never as a sequence of | plus
l.

2.3.3 Compatibility with Xerox's twolc compiler

Version 2 now can load arulesfile (actually state tables) produced by Xerox's twolc rule compiler. For
information on this compiler, visit Xerox Lexical Technology.

2.4 Changesto the lexical component

Inversion 1, lexical entries looked like this:

Chapter 2: Overview Page: 8 of 1679847270 Monday, November 27, 1995

LEXI CON NOUN

" boy Noun "N(boy) "
" baby Noun "N(baby) "
“feet Noun "N(foot).PL"

Lexical entries were grouped into sublexicons declared with the keyword LEXICON; in the example above,
these entries all belong to the NOUN sublexicon. Each lexical entry was composed of three fields, separated
by white space and terminated by a new line. The three fields comprising an entry were the lexical item (or
lexical form), the alternation name, and a gloss string. In version 2 of PC-KIMMO, these lexical entries|ook
likethis:

\ I exform " boy
\ subl exi con NOUN
\al ternation Noun
\ gl oss N(boy)

\| exf orm " baby

\ subl exi con NOUN
\al ternati on Noun
\ gl oss N(boy)

\lexform feet

\ subl exi con NOUN

\al ternati on Noun
\features pl irreg
\gloss N(foot).PL

Lexical entries are encoded in "field-oriented standard format." Standard format is an information interchange
convention developed by the Summer Institute of Linguistics. It tags the kinds of information in ASCI| text
files by means of markers which begin with backdash. Field-oriented standard format (FOSF) is a refinement
of standard format geared toward representing data which has a database-like record and field structure. Using
FOSF to encode lexical entries has several advantages

e Verson 2 of PC-KIMMO has added an optional features field to lexical entries (see the entry above
for feet). Theformat for lexical entries used in version 1 would have required adding a fourth column
to each entry which often would be empty. The new format makes adding another field easier.

e The user can define the codes used to mark fields by mapping them to fixed internal codes. For
example, this declaration in the main lexicon file saysthat the field code glosswill mark the glossfield
(where G istheinternal code for the glossfield):

FI ELDCODE gl oss G

This means that lexical entries can include alternative gloss fields, one of which is chosen for use
when the lexicon isloaded. For example, alexical entry might look like this:

\'I exform " boy

\ subl exi con NOUN
\alternation Noun
\ eng boy

\'sp muchacho

Thefield code eng and sp mark English and Spanish glossfields. If the user wants English glosses
then heincludes this declaration in the main lexicon file:

FI ELDCCDE eng G

and if he wants Spanish glosses, this declaration:

FI ELDCODE sp G

Chapter 2: Overview Page: 9 of 1679847270 Monday, November 27, 1995

The same strategy can be used with any field used in lexical entries.

e Fieldsthat haven't been declared in the main lexicon file are considered extraneous and ignored by
PC-KIMMO. This meansthat lexical entries can contain fields of information intended for purposes
other than use with PC-KIMMO without interfering with PC-KIMMO's operation. For example, a
field linguist could develop adictionary using FOSF where each entry contains many fields; with a bit
of planning asto choice of field codes, the entries would still be compatible with PC-KIMMO.

e FOSF files are compatible with other software developed by the Summer Institute of Linguistics. This
means that one can now use Shoebox (for PCs) or MacL ex (for Macintosh) to manage lexicon files. It
would also be easy to use acommercia database program to manage lexical entries and write aroutine
to export the entries in the required format for PC-KIMMO.

e Lexical entries belonging to a sublexicon do not have to be listed consecutively in asinglefile (aswas
the case for PC-KIMMO version 1); rather, lexical entriesin afile can occur in any order, regardless
of what sublexicon they belong to. Lexical entries of a sublexicon can even be placed in two or more
separate files. Thismakesit possible now to optionally load files of entries that contain lexical entries

belonging to various sublexicons. For example, you could optionally load afile of technical terms
containing nouns, verbs, and adjectives.

2.5 Changesto the user interface

The following new commands are available in PC-KIMMO version 2. For detailed explanations of each
command, see section 5.

clear
Same as NEW command in version 1.
[file] compare synthesize [filespec]

Reads morphological forms (a sequence of morpheme glosses separated by spaces) from filespec, submits
them to the synthesizer, and compares the resulting surface form(s) with the expected results listed in fil espec.

file synthesize input-filespec [output-filespec]

Reads alist of morphological forms (a sequence of morpheme glosses separated by spaces) from
input-filespec, submits them to the synthesizer, and returns each morphological form followed by the
resulting surface form(s).

load grammar [filespec]

L oads aword grammar from filespec.

load synthesis-lexicon [filespec]

L oads a synthesis-lexicon from fil espec.

save [filespec]

Writes the current setting to atake file named filespec. If filespec is not specified, the settings are writtento a
file named PCKIMMO.TAK in the current directory. On start-up, PC-KIMMO automatically tries to load
default settings from PCKIMMO.TAK (or PC-KIMMO.TAK).

set alignment {on | off}

Turns alignment display mode on or off.

set ambiguities number

Chapter 2: Overview Page: 10 of 1679847270 Monday, November 27, 1995

Limits the number of analyses produced by the word grammar to number.
set failures{on | off}

Turns grammar failure mode on or off.

set features{top |all |off}

Sets the feature display mode.

set features {full |flat}

Setsthe feature display style.

set gloss{on |off}

Turns gloss display mode on or off.

set grammar {on |off}

Turns the loaded word grammar on or off.

set trim-empty-features{on | off}

Turns trimming of empty features on or off.

set tree{full |flat |indented | off}

Setsthe tree display style.

set unification {on |off}

Turns feature unification in the word grammar on or off.
set warnings{on |off}

Turns warning mode on or off.

synthesize [morphological-form]

Produces surface forms from a morphological form (a sequence of morpheme glosses).

Chapter 2: Overview Page: 11 of 1679847270 Monday, November 27, 1995

