Appendix A
Developing the Rules Component*

Last modified October 20, 1995

Al Understanding two-level rules
A2 Implementing two-level rules as finite state machines
A3 Compiling two-level rulesinto state tables

A4 Writing therulesfile

This chapter describesin detail the rules component of PC-KIMMO. Section A1 describes the formalism and
meaning of two-level rules. Section A2 explains the relationship between two-level phonological rules and
finite state transducers. Section A3 describes how to trandate (or compile) two-level rulesinto the finite state
transition tables that are used by PC-KIMMO. Section A4 provides specific information on the format of the
rulesfile.

* This appendix isarevised version of chapter 3 of Antworth 1990 (the original PC-KIMMO book).

Al Understanding two-level rules

Al.1 Generative rules and two-level rules
A1l.2 Correspondences and feasible pairs
A1.3 Two-level rule notation

A1l.4 Using character subsetsin rules

A1l.5 Thefour ruletypes

A1l.6 Expressing complex environments
A1l.7 Understanding two-level environments

Figure A1 Diagnostic properties of the four rule types

Section A1 describes the form and meaning of two-level rules: how they differ from the rules of generative
phonology, their notation, the four types of two-level rules, and the concept of two-level environments.

Al.1 Generativerules and two-level rules

Two-level rules are similar to the rules of standard generative phonology, but differ in several crucial ways.
Rule R1 is an example of agenerative rule.

R1 t --->c¢/ i

Rule R2 isthe anal ogous two-level rule.
R2 t:c => __ i
The difference between the two rule formalismsis not just notational; rather their meanings are different.

Generative rules have three main characteristics. First, they are transformational rules---they transform or
rewrite one symbol into another symbol. Rule R1 statesthat t becomes (is changed into) ¢ when it precedesi .
After rule R1 rewritest asc, t nolonger "exists." Second, sequentially applied generative rules convert
underlying formsto surface forms viaany number of intermediate levels of representation; that is, the
application of each rule resultsin the creation of anew intermediate level of representation. Third, generative
rules are unidirectional---they can only convert underlying form to surface form, not vice versa.

In contrast, two-level rules are declarative; they state that certain correspondences hold between alexical (that
IS, underlying) form and its surface form. Rule R2 states that lexical t corresponds to surfacec beforei ; itis
not changed into ¢, and it still exists after the rule is applied. Because two-level rules express a correspondence
rather than rewrite symbols, they apply in paralel rather than sequentially. Thus no intermediate levels of
representation are created as artifacts of arewriting process. Only the lexical and surface levels are allowed. It
isthis aspect of their nature that is emphasized by the name "two-level" rules. Furthermore, because the
two-level model is defined as a set of correspondences between lexical and surface representation, two-level
rules are bidirectional. Given alexica form, PC-KIMMO will return the surface form. Given a surface form,
PC-KIMMO will return the lexical form.

A1l.2 Correspondences and feasible pairs

Two-leve rulestreat each word as a correspondence between its lexical representation (LR) and its surface
representation (SR). For example, consider the lexical formt ati and its surfaceformt aci :

Each pair of lexical and surface charactersisacor respondence pair or smply correspondence. We write a
correspondence with the notation lexical-char acter: surface-character, for instancet:t, a:a,and t: c.
There must be an exact one-to-one correspondence between the characters of the lexical form and the characters
of the surface form.

There are two types of correspondences exemplified in these forms: default correspondences such ast : t and
a: a, and special correspondences such ast : c. The sum of the default and special correspondences makes up
the set of feasible pair s sanctioned by the description. In other words, all feasible pairs must be explicitly
declared in the description, either as default or as specia correspondences.

A1l.3 Two-level rule notation

Looking again at rule R2 (from section A1.1), we see that atwo-level ruleis made up of three parts: the
correspondence, therule oper ator, and the environment or context. Thefirst part of rule R2 isthe
correspondencet : c. It specifiesalexica t that correspondsto asurfacec.

The second part of rule R2 is the rule operator =>. Although this operator is shaped like an arrow, its meaning
is quite different from the rewriting arrow of generative rules (for instance, rule R1). The rule operator
specifies the relationship between the correspondence and the environment in which it occurs. There are four
operators. =>, <=, <=>, and /<=. The semantics of the rule operators are discussed in section A1.5 in detail,
but briefly they mean the following:

the correspondence only occurs in the environment

<=
the correspondence always occurs in the environment
<=>
the correspondence always and only occursin the environment
/<=
the correspondence never occursin the environment
The third part of rule R2 is the environment or context, writtenas___i . It specifies the phonological

environment in which the correspondenceis found. Asin standard phonological notation, an underline, called
an environment line, indicates the position of the correspondence in the environment.

The environment of rule R2 contains a notational shorthand. In itsfull form the rule iswritten thisway:
R3 t:c => i

Rule R3 states that alexica t correspondsto (or isrealized as) a surface ¢ only when it precedesalexica i
that correspondsto (or isrealized as) asurfacei . If the lexical and surface characters of a correspondence pair
areidentical, the correspondence can be written as asingle character. Thus rule R2 is equivaent to rule R3.

Rule R3 illustrates that environments are also stated in terms of two-level correspondences. We cannot just say
thatt correspondsto c beforei ; we must specify whether it isalexical or surfacei . This meansthat a
two-level rule has access to both the lexical and surface environments (see section A1.7 below on two-level
environments). In contrast, rules in generative phonology can refer only to the environment of the local level of
representation, which is often an intermediate level. To emphasize the two-level nature of rule R3, we can
writeit on multiple lines:

The environment of arule can aso make use of aspecial "wildcard" or ANY symbol (written here as @) that
stands for any alphabetic character (as qualified below). For example,

R4 t:re = __ i:@

Rule R4 states that t correspondsto ¢ before any feasible pair whose lexical character isi (that is, alexical i
regardless of how it isrealized). In the example above, this could include both the default correspondencei : i
and any specia correspondences such asi : y. Note carefully that, when used in arule, the ANY symbol does
not really mean any alphabetic character, rather it means any alphabetic character that constitutes afeasible pair
with the other character in the correspondence (see section A3.1). As anotational shorthand, a correspondence
such asi : @issimplified to just the lexical character followed by acolon, that is, i : . The ANY symbol can
also be used on the lexica side of a correspondence:

R5 t:c=>__ @i

Rule R5 statesthat t correspondsto ¢ before any feasible pair whose surface character isi (that is, a surfacei
regardless of what lexical character it realizes). This notation is simplified to just a colon followed by the
surface character, that is, : i . It should be noted that the ANY symbol can only be used in the environment part
of arule, not in the correspondence part.

Another important characteristic of two-level rulesisthat they require a one-to-one correspondence between the
characters of the lexical form and the characters of the surface form. That is, there must be an equal humber of
charactersin both lexical and surface forms, and each lexical character must map to exactly one surface
character, and vice versa. Phonological processes that delete or insert characters are expressed in the two-level

model as correspondences with the NULL symbol, written here as 0 (zero). In the following forms, alexical +
(morpheme boundary) correspondsto a surface 0 (that is, it is deleted) and a surface '(stress mark)
correspondsto alexical 0 (that is, it isinserted).

LR Ot at +

SR "t acOi

The NULL symbol isused only internally by the rules; it is not printed in output forms and does not need to be
written in input forms. PC-KIMMO will accept the lexical input formt at +i and return the surface output form
"tati. The NULL symbol can be used both in the environment and the correspondence parts of arule.

Another specia symbol isthe BOUNDARY symbol, written here as#. It indicates aword boundary, either
initial or final. It can be used only in the environment of arule and can only correspond to another
BOUNDARY symboal, that is, #: #.

Al.4 Using character subsetsin rules

In generative phonology, classes of characters are referred to using distinctive features; for example, vowels
arereferred to using the cluster of features [+syllabic, +sonorant, -consonantal]. PC-KIMMO does not support
distinctive features. Instead, classes of characters are enumerated in lists that are given single-word names (one
or more characters, no spaces).

These character classes are defined in SUBSET statements in the rulesfile (see section A4.3). For example,
the following declarations define C as the set of consonants, V as the set of vowels, S as the set of stops, and
NAS as the set of nasals:

SUBSET C pt kbdgmnngsl!l rwy
SUBSET V i eaou

SUBSET S ptkbdg

SUBSET NAS mn ng

Suppose that after writing rule R2 above (section A1.1), further data show that all the alveolar obstruents are
palatalized before high, front vowels. For example,

LR ati ade asi aze
SR aci aje aSi aZe

Rather than write a separate rule for each correspondence, we will define subset D for alveolar obstruents,
subset P for their palatalized counterparts, and subset vhf for the high, front vowels:

SUBSET D t ds z
SUBSET P cj Sz
SUBSET Vhi i e

Rule R2 can now be generalized by writing it with subsets:

R6 DIP => _ Vhf
A1l.5 Thefour ruletypes

The rule operator specifiesthe logical relation between the correspondence and the environment of atwo-level
rule. The rule operators are roughly equivalent to the conditional or implicative operators of formal logic. Rule
R7 (rule R2 above) is written with the rule operator =>.

R7 t:c => i

The => operator means "only but not aways." Rule R7 statesthat lexical t corresponds to surfacec only
preceding i , but not necessarily always in that environment. Thus other realizations of lexical t may be found
inthat context, including t : t . Inlogical terms, the => operator means that the correspondence impliesthe
context, but the context does not necessarily imply the correspondence. To state it negatively, rule R7 prohibits

the occurrence of the correspondencet : ¢ everywhere except precedingi .

The => ruleis roughly equivalent to an optional rule in generative phonology, and is typically used in cases of
so-called free variation. Rule R7 would be used if the occurrence of t and c freely varies beforei . Given the
lexical input formt ati and rule R7, the PC-KIMMO generator will produce both surface formst aci and
tati.

Rule R8 isthe same asrule R7 except that it iswritten with the rule operator <=.
R8 t:c <= i

The <= operator means "always but not only." Rule R8 states that lexical t aways (obligatorily) corresponds
to surfacec preceding i , but not necessarily only in that environment. Thust : ¢ is permitted to occur in other
contexts. In logical terms, the <= operator means that the context implies the correspondence, but the
correspondence does not necessarily imply the context. To state it negatively, if t : -c (where -c meansthe
logical negation of ¢) means the correspondence of lexical t to surface not-c (that is, anything except c), then
rule R8 prohibits the occurrence of t : ~c in the specified context.

The <= ruleisroughly equivalent to an obligatory rulein generative phonology. It is used in caseswhere a
correspondence is obligatory in one environment but also occurs in some other environment as specified by
another rule. Given thelexica input formt ati and rule R8, the PC-KIMMO generator will produce both
surface formst aci and caci , unless constrained by some other rule.

Rule R9 is again the same, except that it iswritten with the rule operator <=>.
RO t:c <=> ___ i

The <=> operator is the combination of the operators <= and => and means "aways and only." Rule R9 states
that lexicd t corresponds to surfacec alwaysand only precedingi . The <=>ruleis used when a
correspondence obligatorily occursin agiven environment (compare the <= operator) and in no other
environment (compare the => operator). It is equivaent to the biconditional logical operator and means that the
correspondenceis allowed if and only if it isfound in the specified context. Given the lexical formtati and
rule R9, the PC-KIMMO generator will return only the surface formt aci . Thusrule R9 is equivalent to the
combination of rules R7 and R8. It is up to the analyst to choose between writing separate <= and => rules or
collapsing them into one <=>rule.

Rule R10 is written with the rule operator /<=.
R10 t:c /<= __ i:é

The /<= operator means "never." It means that the correspondence specified by the ruleis prohibited from
occurring in the specified context. A /<=ruleisusually used to cover "exceptions' to amore general rule. Rule
R10 states that lexical t cannot correspond to surface ¢ precedingi : é. Given thelexical formtati , rule R10,
and arule sanctioning ai : & correspondence, the PC-KIMMO generator will allow the surface formst at & and
cat & but disallowt acé or cacé. Asthe operator symbol suggests, the /<= operator is similar to the <=
operator in that it does not prohibit the correspondence from occurring in other environments.

Figure A1 summarizes the diagnostic properties of rules R7 through R10. For more on the semantics of the
four rule types, see section A3.3.

Figure A1l Diagnostic properties of the four rule types

| Rules 7-10 | I'st:c allowed | Is preceding i the | Must t always |
[| preceding i? | only environnment in | correspond to
| | | which t:c is allowed? | ¢ before i? |

| t:c = _ i | yes [yes [no [
| t:c <= i | yes | no | yes |
| t:c <=> i | yes | yes [yes [
| t:c /<= i no [[[

A 1.6 Expressing complex environments

Severa notational conventions exist that can be used to build complex environment expressions. These involve
optional elements, repeated elements, and aternative elements. As an example we will use avowe reduction
rule, which states that a vowel followed by some number of consonants followed by stress (indicated by ') is
reduced to schwa (é). For example,

LR: bab'a banb'a
SR: béb'a bénb'a

Parentheses indicate an optional element. Rule R11 requires either one or two consonants.
R11 V:é <=> Q"

Rule R12 requires either zero, one, or two consonants.

R12 V:é <=> (OO

An asterisk indicates zero or more instances of an element. (The asterisk functions the same as aKleene-star in
regular expressions.) Rule R13 requires either zero, one, or more consonants.

R13 Vie <=> ___ C*

Rule R14 requires one or more consonants.

R14 Vie <=> ___ CcCr

A correspondence may occur in more than one environment. Consider arule of vowel lengthening whereby the
correspondence a: & (short and long a) occurs in two distinct environments: when it occursin the syllable
preceding stress (pretonic lengthening) and when it occurs in the stressed syllable (tonic lengthening). For
example,

LR | adab' ar

SR | adab' ar

Rule R15 expresses pretonic lengthening and rule R16 expresses tonic lengthening.
R15 a.a => C

R16 a:a =>"'

Note carefully that a description containing these two rulesis self-contradictory. Both rules use the =>
operator, which permits the correspondence to occur only in the specified environment. Rule R15 says that

a: & occursonly in apretonic syllable; rule R16 saysthat a: & occurs only in atonic syllable. Thusthe two
rules conflict with each other. Thistype of rule conflict is called an environment conflict (or a=> conflict for
short, since it involves => rules) and is discussed more fully in section A3.13. The conflict between rules R15
and R16 can be resolved by collapsing the two rulesinto one. In rule R17 the vertical bar indicates digunction
between expressions and the square brackets delimit the digunctive expressions from the rest of the
environment (which in this case is empty).

R17 aaa=>[_ _CJ| '"__1
Rule R17 now says, correctly, that the a: & correspondenceis alowed only in either pretonic or tonic position.

Now consider rules R18 and R19, which are the same as rules R15 and R16 except that they are written with
the <= operator.

R18 aaa<=__ C

R19 a:a <="

The <= operator means that the correspondence occurs always (obligatorily) in the environment but not only
there. Rules R18 and R19 do not conflict with each other, and so do not have to be collapsed into asingle rule.
However, if the analyst so chooses, they can be collapsed into rule R20.

R20 aaa<=[___C| '___1]

Given the meanings of the rule types as explained in section A1.5, we have the following choices for writing
rules for lengthening. If vowel lengthening occurs only but not always in the specified environments, we must
use rule R17. If vowel lengthening occurs always but not only in the specified environments, we must use rule
R20 (or rules R18 and R19). And if vowel lengthening occurs always and only in the specified environment,
we must use both rules R17 and R20. If the last case istrue, the analyst also has the option of collapsing rules
R17 and R20 into one <=> rule, rule R21.

R21 aca<=][__C| '___1]

Rule R21 is an example of inclusive digunction; that is, the correspondence is found in either environment (or
both) in the same input word. In standard generative phonology, the two subparts of arule of this type must be
implicitly ordered with the convention that if one of the subparts of the rule applies, the rest of the subparts are
not skipped but also apply (thisis called conjunctive ordering in Schane 1973:90). In the two-level model, rule
ordering is both unavailable and unnecessary, since al rule environments are available ssmultaneoudly.

Asan example of an exclusive digunction, consider the situation where the vowel of the ultimate (final)
syllable of aword islengthened unlessit is schwa, in which case the vowel of the penultimate (next to final)
gyllable islengthened. For example,

LR maman namané
SR. manmAn nanané

Assume these subsets, where V is the set of short vowels and VI ng isthe set of their lengthened counterparts
(but & is not lengthened):

SUBSET V é

i au
SUBSET VI ng T ad

Rules R22 and R23 (where# represents word boundary) demonstrate a=> conflict (see above and section
A3.13 on rule conflicts) and must be collapsed.

R22 ViMing => = Cé#

R23 V:Ving = C#

In the example above on tonic and pretonic lengthening (rules R15 to R21), we collapsed the rules with the
vertical bar notation, allowing lengthening to occur in either or both of the environments. Thisis what we
wanted, since tonic lengthening and pretonic lengthening are separate phonological processes and both are
possible in the same word. But in the present example we are dealing with just one lengthening process,
though with two alternative environments. We want lengthening to occur in one or the other of the
environments but not both in the same word. Rules R22 and R23 can then be collapsed as rule R24 by using
the parenthesis notation.

R24 V:Ving => _ C(é&)#
A word-fina schwawill not be lengthened by this rule because, even though lexical schwa belongsto the v

subset, no correspondence to a surface long schwa has been declared (see section A3.1 for details on subsets
and declaring feasible pairs).

Al.7 Understanding two-level environments

One of the defining features of two-level rulesisthat they can refer to both lexical and surface environments.
(N.B.: This section is based on Dalrymple and others 1987:19-22.) This makes it possible for atwo-level

description to handle many phenomena that would require sequentially ordered rulesin standard generative
phonology. For example, consider these two rules:

Nasal Assimilation:
the nasal character N (unspecified for point of articulation) assimilates to the point of articulation of a
following stop.

Stop Voicing:
avoiceless stop isvoiced after anasal.

These rules relate the lexical sequences Np, Nt , and Nk to the surface sequences mb, nd, and ngg, respectively.
To account for these correspondences, generative phonology would require two rules (the following rules
account only for labials):

Nasal Assim |l ation
R25 N--->m/ ___p

St op Voi ci ng
R26 p--->b/ m___

The rules must apply in this order, sinceif rule R26 were applied first it would destroy the environment needed
for rule R25. The two-level versions of these rules do not need to be ordered; in effect they apply
simultaneoudly:

Nasal Assim |l ation
R27 Nm<=> ___ p:

St op Voi ci ng
R28 p:b <=>:m___
These rules work because of the careful specification of lexical and surface environments. Rule R27 saysthat a
lexical Nisredlized as a surface mpreceding alexical p. In this context the notation p: (equivalenttop: @
stands for the correspondences p: p (by default) and p: b (from rule R28). Rule R28 saysthat alexica p is
realized as a surface b following a surface m The notation: m(equivalent to @ m) stands for the
correspondencesm m(by default) and N: m(from rule R27). Because the two-level model alowsrule
environments to have access to both the lexical and surface levels, rule ordering and intermediate levels are not
needed.

A common error in writing two-level rule environmentsis to overspecify the environment. Consider this
overspecified version of rule R27:

Overspecified version of Nasal Assimlation
R27a Nm<=> ___ p

Even though the symbol p seems simpler than p: , it actually is more specific, asit stands for the
correspondence p: p only. Rule R27ais now in conflict with the voicing rule (R28), which says that after a
surface monly the correspondence p: b can occur. Conversely, the correspondence p: b of rule R28 isin
conflict with rule R27a, which allows only p: p to occur after asurfacem

Now consider another incorrectly specified version of the Nasal Assimilation rule (R27):

Overspecified version of Nasal Assimlation
R27b Nm<=> ___ p:b

At first this version seems correct, sinceit is precisely in the environment of p: b that we want the rule to
apply. The problem isthat rule R27b does not require N to be realized as mpreceding alexical p that isreaized
as anything other than surface b, and the Voicing rule (R28) does not require p to be realized asb except when
it follows a surface m Assuming that otherwise lexical N corresponds to surfacen, the lexical form Np will be
realized as both np and nb. Thus overspecification does not aways result in arule conflict; it may also result in
overgeneration. (See also section A3.12 on two-level environments.)

A2 Implementing two-level rules as finite
state machines

A2.1 How two-level rules work

A2.2 How finite state machines work

A2.3 A =>ruleasafinite state machine

A2.4 A <=ruleasafinite state machine

A2.5 A <=>ruleasafinite state machine

A2.6 A /<=ruleasafinite state machine

Figure A2 FSA for language L1

Figure A3 FST diagram for the correspondence between languages L1 and L2

Figure A4 FST diagram of a =>rule

Section A2 explains how two-level rules operate, how they can be implemented as finite state machines, and
how the four types of two-level rules can be trandated into finite state tables.

A2.1 How two-level rules work

To understand how two-level rules work, consider again rule R2, repeated here as rule R29.
R29 t:c => i

The operator => in thisrule meansthat lexical t isrealized as surface ¢ only (but not always) in the
environment precedingi : i .

The correspondencett : ¢ declared in rule R29 is a specia correspondence. A two-level description containing
rule R29 must also contain a set of default correspondences, suchast: t, i : i, and so on. The sum of the
special and default correspondences are the total set of valid correspondences or feasible pairs that can be used
in the description.

If atwo-level description containing rule R29 (and all the default correspondences also) is applied to the lexical
formtati , the PC-KIMMO generator would proceed as follows to produce the corresponding surface form.

Beginning with the first character of the input form, it looksto seeif there is a correspondence declared for it.
Dueto rule R29 it will find that lexical t can correspond to surface c, so it will begin by positing that
correspondence.

LR: t a t i
Rul e: 29

SR: c

At this point the generator has entered rule R29. For thet : ¢ correspondence to succeed, the generator must
find ani : i correspondence next. When the generator moves on to the second character of the input word, it
findsthat it isalexicd a; thusrule R29 fails, and the generator must back up, undo what it has done so far,
and try to find a different path to success. Backing up to thefirst character, lexical t , it triesthe default
correspondencet : t .

LR: a t i

t
I
Rul e: [
I
SR t

The generator now moves on to the second character. No correspondence for lexical a has been declared other
than the default, so the generator posits a surface a.

LR: ti

Rul e:

t
I
I
|

QT

SR: t

Moving on to the third character, the generator again findsalexical t , so it enters rule R29 and posits a surface
C.

LR t a
||

Rul e: | | 29
||

SR: t a ¢

Now the generator looks at the fourth character, alexical i . This satisfies the environment of rule R29, so it
posits a surfacei , and exits rule R29.

LR

Rul e:

t [
| |
| 9 |
I !

|

o—Nn—

a
I
I
|

SR: t a

Since there are no more charactersin the lexical form, the generator outputs the surfaceformt aci . However,
the generator is not done yet. It will continue backtracking, trying to find alternative realizations of the lexical
form. First it will undo thei : i correspondence of the last character of the input word, then it will reconsider
the third character, lexical t . Having already tried the correspondencet : c, it will try the default
correspondencet : t .

LR: i

t a t
.
Rul e: [| |
.
SR t a t

Now the generator will try thefinal correspondencei : i and succeed, since rule R29 does not prohibit t : t
beforei (rather it prohibitst : ¢ in any environment except beforei).

LR t a t i
[
Rul e: I R
N
SR t a t i
All other backtracking paths having failed, the generator quits and outputs the second surfaceformt at i .

The procedure is essentially the same when two-level rules are used in recognition mode (where a surface form

isinput and the corresponding lexical forms are output).

A2.2 How finite state machines wor k

The basically mechanical procedure for applying two-level rules makesit possible to implement the two-level
model on acomputer by using aformal language device called afinite state machine. The smplest finite
state machineisafinite state automaton (FSA), which recognizes (or generates) the well-formed strings of
aregular language (acertain type of formal language---see Chomsky 1965). While finite state machines are
commonplace in computer science and formal language theory (see, for instance, Hopcroft and Ullman 1979),
they may not be familiar to al linguists. They have, however, had their place in the linguistic literature. Most
widely known would be chapter 3 of Chomsky's Syntactic Structures (1957) in which finite state grammars
are dismissed as an inadequate model for describing natural language syntax. Other notabl e treatments of finite
state automatain the linguigtic literature are Chomsky 1965 and Langendoen 1975. A good introduction to
finite state automata written for linguistsis chapter 16 of Partee and others 1987.

An FSA iscomposed of states and directed transition arcs. There must minimally be an initial state, afinal
state, and an arc between them. A successful transition from one state to the next is possible when the next
symbol of the input string matches the symbol on the arc connecting the states. For example, consider the
regular language L1 consisting of the symbolsa and b and the "grammar" abNa where N >= 0. Well-formed
strings or "sentences’ in thislanguage include aa, aba, abba, abbba, and so on. The language L 1 is defined
by the FSA in figure A2.

Figure A2 FSA for language L1
b

State 1 istheinitia state and state 3 isthe final state (signified by the double circle). States 1 and 2 are both
nonfinal states (signified by the single circle). To recognize the string abba, proceed as follows:

1. Start at state 1.

2. Input the first symbol of the string and traverse the a arc to state 2.

3. Input the second symbol and traverse the b arc back to state 2.

4. Input the third symbol and again traverse the b arc back to state 2.

5. Input the last symbol and traverse the a arc to state 3, which isafina state.

Because the input string is exhausted and the machineisin afina state, we conclude that abba isastring in the
language L 1.

An FSA can also be represented asastate transition table. The FSA aboveis represented as this state table:

a b

W e
cCwN !
oNnvo

The rows of the table represent the three states of the FSA diagram, with the number of the final state marked

with a colon and the numbers of the nonfinal states marked with periods. The columns represent the arcs from
one state to another; the symbol 1abeling each arc in the FSA diagram is placed as a header to the column. The
order of the columnsin the table has no effect on the operation of the table, but iswritten to reflect the order of
the FSA. Notice that the two a arcsin the FSA diagram are represented as asingle column labeled a. The cells
at the intersection of arow and a column indicate which state to make atransition to if the input symbol
matches the column header. Zero in acell indicates that there is no valid transition from that state for that input
symbol; in the FSA diagram thisis equivalent to having no arc labeled with that input symbol. The machineis
said to fail when this happens, thus rejecting the input form. Note that the colon marks state 3 as the only final
state. Thismeansthat if the machineisin any state but 3 when the input string is exhausted, the string is not
accepted. The O transitionsin state 3 say that once the machine gets to that state, the string is not accepted if
there are remaining input symbols.

An FSA operates only on asingle input string. A finite state transducer (FST) islike an FSA except that it
simultaneously operates on two input strings. It recognizes whether the two strings are valid correspondences
(or trandations) of each other. For example, assume the first input string to an FST isfrom language L1
above, and the second input string is from language L 2, which correspondsto L1 except that every second b is
c. Hereis an example correspondence of two strings:

L1: abbbba
L2: abcbca

Figure A3 showsthe FST in diagram form. Note that the only difference from an FSA isthat the arcs are
labeled with a correspondence pair consisting of a symbol from each of the input languages.

Figure A3 FST diagram for the correspondence between languages L1 and L2

FSTs can a so be represented as tables, the only difference being that the column headers are pairs of symbols,
such asa: a and b: c. For example, the following tableis equivalent to the FST diagram in figure A3.

hwnhE
obr BN

A2.3 A =>ruleasafinite state machine

The key insight of PC-KIMMO isthat if phonological rules are written as two-level rules, they can be
implemented as FSTs running in parallel. In the next four subsections we briefly show how each of the four
rule types (see section A1.5) trandates into an FST. Detailed procedures for compiling rules into state tables
arefound in section A3.

Consider rule R30.

R30 t:c => i

In terms of FSTSs, thisrule defines two "languages' that are trandations of each other. The "upper” or lexical
language specifiesthe string t i ; the "lower" or surface language saysthat ci may correspond to it. Note,
however, that atwo-level rule does not specify the grammar of afull language. Rather it deals with allowed
substrings. A possible paraphrase of rule R30 is, "If ever the correspondencet : ¢ occurs, it must be followed
byi:i." Inother words, if anything other thant : ¢ occurs, thisrule ignoresit. This fact must be incorporated
into our trandation of atwo-level rule into atransition diagram, shown in figure A4. InthisFST, state 1 is
both the initial and only final state. The @ @arc (where @isthe ANY symbol, see section A1.3) allows any
pairs to pass successfully through the FST exceptt:c andi:i .

Figure A4 FST diagram of a=>rule

tc
@@ ‘

Rule R30, represented asthe FST in figure A4, trandates into the following state table, labeled T30. (In the
remainder of this chapter, each rule and its corresponding state table have the same label number, for instance
R30 and T30.) Notice that state 1, theinitial state, isakind of "default” state that ignores everything except the
substring crucial to therule.

T30 Exanpl e of a => table
ti @
ci @

1:

2.
A set of two-leve rulesisimplemented as a system of parallel FSTsthat specify al the feasible pairs and
where they can occur. A state table is constructed such that the entire set of feasible pairsin the descriptionis
partitioned among the column headers with no overlap. That is, each and every feasible pair of the description
must belong to one and only one column header. Table T30 specifies the special correspondencet : ¢ and the
environment in which it is allowed. The @ @column header in table T30 matches al the feasible pairs that are

defined by all other FSTs of the system. Thus, with respect to table T30, @ @does not stand for al feasible
pairs; rather it stands for all feasible pairsexceptt: c andi : i .

The default correspondences of the system must be declared in atrivial FST like table T31 (see section A3.2
(step 2) and section A4.4):

T31 Tabl e of default correspondences}
pt kai u@
pt kaiua@

1. 1111111

Even thistable of default correspondences must include @ @as a column header. Otherwise it would fail when
it encountered a specia correspondence such ast : c¢. Thisisdue to the fact that all the rulesin atwo-level
description apply in parallel, and for each character in an input string all the rules must succeed, even if
vacuously. Now given thelexical formt ati k, tables T30 and T31 will work together to generate the surface
formstati k andt aci k.

To understand how to represent two-level rules as state tables, we must understand what the two-level rules
really mean. (See section A1.5 above.) Wetend to think of two-level rules positively, that is, as statements of
where the correspondence succeeds. In fact, state tables are failure-driven; they specify where correspondences
must fail. It is natural to think of rule R30 as saying that the correspondencet : ¢ succeeds when it occurs
precedingi : i . But state table T30 actually works because it fails when anything but i : i followst : ¢ (the
zeros in state 2 indicate that the input has failed). This reorientation to thinking of phonological rules as
failure-driven is one of the most difficult barriersto overcome in learning to write two-level rules and state
tables, but it isthe primary key to success with PC-KIMMO.

In summary, theruletypeL: S => E (whereL: Sisalexical:surface correspondence and E is an environment)
positively saysthat L isrealized ass only inE. Negatively it saysthat L realized as s isnot allowed in an
environment other than E. The state table for a=> rule must be written so that it forcesL: stofail in any
environment except E. In logical terms, the => operator indicates conditionality, such that, if L: S exists, then it
must beinkE.

A2.4 A <=ruleasafinite state machine
Rule R32 below is the same as rule R30 except that it iswritten with the <= operator.

R32 t:c <= i

Thisrule saysthat lexical t isawaysrealized as surface ¢ when it occurs beforei : i , but not only beforei : i .
Thusthelexical formt ati will successfully match the surfaceformt aci but nott at i . Note, however, that it
would also match caci sinceit doesnot disallow t : ¢ in any environment. Rather, itsfunction isto disallow
t:t intheenvironment of afollowingi : i . Remembering that state tables are failure-driven, the strategy of
writing the state table for rule R32 isto forceit to fail if it recognizesthe sequencet:t i:i. Thisallowsthe
correspondencet : ¢ to succeed elsawhere. The state table for rule R32 looks like this:

T32 Exanpl e of a <= table
tti @
cti @
1: 1211
22 1201
In state 1 any occurrences of the pairst: c, i : i, or any other feasible pairs are allowed without moving from

state 1. It isonly the correspondencet : t that forces atransition to state 2, where all feasible pairs succeed
excepti:i (thezerointhei:i columnindicatesthat the input hasfailed). Notice that state 2 must be afinal
state; this allows al the correspondences excepti : i to succeed and return to state 1. Also notice that in state 2
the cell under thet : t column contains atwo. Thisis necessary to allow for the possibility of att sequencein
the input form; for instance, table T32 will apply to thelexical formtatti to produce the surfaceformt at ci .
This phenomenon is called backlooping and istreated in detail in section A3.4, part 2.

Actualy, table T32 is potentially overspecified. It isnot really thepair t : t that is disallowed beforei , but
rather thepair t : —~c; that is, lexical t and surface not-c (anything but c). Suppose our two-level description
also contained arule that defined at : n correspondence. Liket : t, t : n should fail beforei : i . Rather than add
another column for t : n to table T32, we can replace the column header t : t witht : @ Given that the more
specific correspondencet : ¢ isaso declared in thetable, t : @will match all other valid surface
correspondencestolexical t, such ast: t, t: n, and soon. Hereistable T32 revised to use at : @column
header.

T32a A <= tab!e

In summary, theruletypeL: S <= E positively saysthat L isalwaysredized asSinE. Negatively it saysthat L
realized as any character but S isnot alowed in E. The state table for a <= rule must be written so that it forces
all correspondences of L with anything but S to fail in E. Logically, the <= operator indicates that if L iSinE,
then it must correspond to S.

A25 A <=>ruleasafinite state machine

Rule R33 uses the <=> operator and is equivalent to combining rules R32 and R30.

R33 t:c <=> i

The state table for a<=> rule is smply the combination of the <= and the => tables. The state table for rule
R33 is built by combining tables T32a and T30 to produce table T33 below. The column headers of table T33
are the same as table T32a. States 1 and 2 represent the <= part of the table (corresponding to table T32a) while
states 1 and 3 represent the => part (corresponding to table R30).

T33 Exanpl e of a <=> table
tti @

WN P
o ww
oNN
R OoOR
oOr Pk

In summary, theruletypelL: S <=> E saysthat L isawaysand only realized asSinE. Itimpliesthat L: Sis
obligatory in E and occurs nowhere else. The state table for a <=> rule must be written so that it forces al
correspondences of L with anything but s to fail in g, and forces L: S to fail in any environment except E.

A2.6 A /<=ruleasafinite state machine

Rule R34 exemplifies the fourth type of rule, the /<= rule.
R34 t:c /<= __ i:é

Thisrule states that the correspondencet : ¢ isdisallowed when it precedesalexical i that isrealized asa
surfaceé. Asthe /<= operator suggests, this rule type shares properties of the <= typerule. It states that the
correspondence aways fails in the specified environment, but allows it (does not prohibit it) in any other
environment. The strategy for building a state table for the /<= rule is to recognize the correspondence in the
specified environment and then fail. In table R34 the correspondencet : ¢ forces atransition to state 2 where
the tablefailsif it encounters the environment i : &, but succeeds otherwise. Notice that like table T32 above for
a<=rule, state 2 isfinal.

T34 Exanpl e of a /<= table
£

In summary, theruletypeL: S / <= E positively saysthat L isnever realized asS in E. Negatively it saysthat L
realized as s isnot alowed in E. Logicaly, the /<= operator indicatesthat if L isin E, then it must correspond
to -S.

A3 Compiling two-level rules into state
tables

A3.1 Overview of the rules component

A3.2 General procedure for compiling rulesinto tables
A3.3 Summary of two-level rule semantics

A3.4 Compiling rules with a right context

A3.5 Compiling rules with a left context

A3.6 Compiling rules with both left and right contexts
A3.7 Compiling insertion rules

A3.8 Using subsetsin state tables

A3.9 Overlapping column headers and specificity
A3.10 Expressing word boundary environments

A3.11 Expressing complex environmentsin state tables
A3.12 Expressing two-level environments

A3.13 Rule conflicts

A3.14 Comments on the use of => rules

A3.15 Comments on the use of morpheme boundaries
A3.16 Expressing phonotactic constraints

Figure A5 Semantics of two-level rules

Figure A6 Truth tables for two-level rules

Figure A7 FST with backlooping

Section A3.1 gives an overview of the structure of the rules component. Section A3.2 is a reference summary
of the general procedure for compiling (trandating) two-level rulesinto state transition tables. Detailed
examples of how to apply the general procedure are found in sections A3.4 through A3.7. Sections A3.8
through A3.16 treat in detail various topics related to rule compilation, such as subsets, word boundary
environments, complex environments, rule conflicts, and phonotactic constraints.

A3.1 Overview of the rules component

This section discusses alphabetic characters, feasible pairs, using the ANY symbol and subset names,
declaring default and special correspondences, mapping feasible pairsto column headers, and applying rulesin
parallel. Some of these topics, discussed here concisely, are covered in more detail in sections A3.4 through
A3.16 and in section A4.

Alphabetic characters

All characters or symbols used in either lexical or surface formsin the description constitute the al phabet used
by the rules. The NULL symbol and the BOUNDARY symbol are also considered alphabetic characters,
though in the rulesfile they are declared separately from the rest of the alphabet (see section A4.1). The ANY
symbol and subset names are not part of the a phabet.

Feasible pairs

A feasible pair is a specific correspondence between alexical aphabetic character and a surface alphabetic
character. The set of feasible pairsisthe set of all such correspondences used in a description. Some of these
correspondences are default correspondences, where the lexical and surface characters areidentical (for

instancet: t andi : i); others are special correspondences, where the surface character differs from the lexical
character (for instancet : ¢ andi : i). Each feasible pair, whether a default or special correspondence, must be
explicitly declared in adescription. Thisis done by including each feasible pair as a column header in at least
one state table. Only column headers consisting of aphabet characters, including the NULL symbol and the
BOUNDARY symbol, are considered feasible pairs. Column headers containing the ANY symbol or subset
names are ignored for the purpose of declaring feasible pairs.

When the user runs PC-KIMMO and loads a set of rules from a disk file, the column headers of every state
table are scanned as they areread in and alist of feasible pairsis compiled. After the rules are loaded, the user
can see the entire set of feasible pairs currently in use by the rules component by issuing thelist pairs
command (see section 4.5.5). It should aso be remembered that the set of feasible pairsisrevised each time
one or more rulesisturned on or off by means of theset rules [on | off] command (see section 4.5.6.1).

Using the ANY symbol and subset namesin column headers

Although correspondences that contain the ANY symbol or subset names are not feasible pairs and cannot
serve as the correspondence part of arule, they do occur in the environment part of arule and therefore appear
as column headers in state tables. In order to write correct state tables, the analyst must understand exactly
what set of pairsis specified by column headers that contain the ANY symbol or subset names. Although the
ANY symbol issaid to be a"wildcard" character that can stand for any alphabetic character, its effective
meaning relative to agiven set of rulesis determined by the set of feasible pairs sanctioned by the rules. For
example, in aset of rules the correspondencet : @(where @has been declared to be the ANY symbol) does not
represent al possible correspondences that havet astheir lexical character and any other member of the
alphabet as their surface character; rather, it represents only the feasible pairs that match its pattern, for instance
t:t andt: c if those correspondences are feasible pairs by virtue of appearing as column headersin one or
more tables.

Similarly, asubset nameis said to stand for a set of aphabetic characters; but its effective meaning relative to a
given set of rulesis determined by the set of feasible pairs sanctioned by the rules. For example, in a set of
rules where the subset Spal has been declared to have the memberss, x, and z, the correspondences: Spall
does not represent all possible correspondences that have s astheir lexical character and one of the members of
the subset Spal astheir surface character; rather, it represents only the feasible pairs that match its pattern, for
instances: s and s: z if these are the only correspondencesinvolving lexical s that have been used as column
headers in one or more tables. This means that using the correspondence s: Spal asacolumn header inarule
does not implicitly declare asfeasible pairs all correspondences that match it. That is, unless the
correspondences: x isexplicitly declared as afeasible pair somewherein the set of rules, it isnot included in
the set of feasible pairs represented by the correspondence s: Spal . (For more on using subsets, see section
A3.8))

Declaring default correspondences

The fact that each valid correspondence used in a description must be explicitly declared asafeasible pair in the
rules has consequences for how default correspondences are declared. Since rules are written to express the
conditions under which special correspondences occur, default correspondences are not normally included in
each rule. Thus, in order to get every feasible pair into a column header of a state table, the rules component
must contain atable strictly for the purpose of declaring the default correspondences (see sections A2.3 and
A4.4). A table of default correspondences has only one state (which isafinal state), and each transition is back
to state 1. The column headers provide the list of default correspondences, with @ @(where @isthe ANY
symbol) appended to the end of the list so as not to block the occurrence of specia correspondences. Itis
impossible to include too many correspondencesin thislist. That is, it would be possible to make the list
include every feasible pair and dispense with thefinal @ @ It is possible to underspecify, however. If a
feasible pair isleft out of the table of default correspondences and does not occur explicitly in any other table,
then that correspondence will never be recognized as valid. For the sake of consistency, the table of default
correspondences should even include pairs that aso appear in the environments of other tables; the redundancy
has no effect on the operation of the rules. (For more on writing tables of default correspondences, see section
A4.4)

Declaring special correspondences

Specia correspondences do not need to be gathered into one table as is done with default correspondences
since most special correspondences are used as column headers in the rules that apply to them. However, if a
set of specia correspondences is represented with subsets, it may be necessary to write a separate table
declaring the specia correspondences as feasible pairs. For example, consider a rule whose correspondence
part isD: P, where Dis asubset that contains the alveolar consonantst , d, and s and P is a subset that contains
the palatalized consonantsc, j , and S. The intention of the analyst is that the subset correspondence D: P
should stand for the feasible pairst : c, d: j, and s: S. However, in the state table for this rule the column
header D: P will not match any feasible pairs except those that have been explicitly declared elsewhere. In this
Stuation it is best to write a separate table where the feasible pairs intended to match the subset correspondence
are explicitly used as column headers. For the sake of consistency this should be done even if the pairs do
appear in tables elsawhere in the description; the possible redundancy has no effect on the operation of the
rules. (For more on using subsets, see section A3.8.)

Mapping feasible pairsto column headers

Aswas described above, when a set of rulesisloaded and the list of feasible pairsis compiled, the set of pairs
that match each column header is determined. In the example above, the pairst : c, d: j , and s: S should match
the column header D: P. In thisinstance the meaning of the column header D: P is understood relative to the
entire set of rules. However, relative to asingle rule, a column header may actually specify only a subset of the
pairs that it specifiesrelative to the entire rule set. This Situation arises as follows.

Each state table must be constructed such that every feasible pair is represented by one of its column headers.
That is, for each tablein arule set, the entire list of feasible pairsis partitioned among the column headers with
no overlap. In atable, each feasible pair belongs to one and only one column header. After loading a set of
rules and compiling the list of feasible pairs, PC-KIMMO goes through the set of rules again to interpret the
column headers of each table. For each table it scansthe list of all the feasible pairs and assigns each oneto a
column header. If afeasible pair matches more than one column header, it is assigned to the most specific one,
where the specificity of a column header is defined as the number of feasible pairs that match it. For example,
consider atable that contains both an's: S column header and a D: P column header, where the feasible pairs
that match it includet : c, d:j, and s: S. When PC-KIMMO tries to assign the feasible pair s: S to acolumn
header in thistable, it finds that it matches both the s: S column and the D: P column. PC-KIMMO will assign it
to thes: s column, sinceit is more specific than the D: P column (one versus three pairs that match). This
means that, relative to this particular rule, the D: P column header represents only two feasible pairs, namely

t: c andd: j . When running PC-KIMMO, the user can see exactly how feasible pairs are assigned to the
column headers of atable by using the show rule command (see section 4.5.9).

It is possible to construct a state table in which afeasible pair matches multiple column headers that have the
same specificity value, thus making it impossible to uniquely assign the pair to acolumn header. This
congtitutes an incorrectly written state table. When arulesfile containing such a state table is loaded, awarning
message is issued aerting the user that two columns have the same specificity. If the user proceeds to anadyze
forms with the incorrectly written table, the pair will be assigned (arbitrarily) to the leftmost column that it
matches. Correct results cannot be assured. (For more on the problem of overlapping column headers, see
section A3.9.)

In order to get every feasible pair in the column headers of atable without having to literally specify each pair,
acolumn header of the form @ @(where @isthe ANY symbol) isincluded in the table. This coversall pairs
that are not part of the correspondence and environment of therule.

Applying rulesin parallel

To understand how the PC-KIMMO rules component works to generate and recognize forms, it must be kept
in mind that two-level rules, represented as finite state tables, apply in parallel (or smultaneoudly). This means
that for an input form to be successfully processed by PC-KIMMO, all of the rules must succeed. In other
words, as each character of the input form is processed, it must pass successfully through every rule before the
next character can be processed. It is precisely because of PC-KIMMO's parallel rule application that each state
table must represent in its column headers the entire set of feasible pairs.

A3.2 General procedure for compiling rulesinto tables

This section presents a step-by-step procedure for compiling rulesinto state tables. The following
abbreviations are used in the discussion.

L

=S

-E

rc

alexical character

asurface character

any surface character but s

the lexical-to-surface correspondence on left side of rule

an environment

any environment but E

the left context in the environment

the right context in the environment

the NULL symbol

the ANY symbol

the BOUNDARY symbol

. Make acompleteinventory of al the possible lexical-to-surface correspondences found in the data.

From this, compile alist of al the symbols used as lexical and surface characters, including the NULL
symbol and the BOUNDARY symbol. Thisfull list isthe alphabet used by the rules. The rules will
also use the ANY symbol and subset names.

. Declare all the default correspondences required by the description. Thisis done by writing one or

more tables that contain only and al the default correspondences (see section A4.4).

. For each specid correspondence (L: S), write down your hypothesis about the environment (E) in

which it occurs. (The environment may be digunctive; that is, E1 or E2 or E3.) For each
correspondence, answer the following two questions:

a. Is E the only environment in which L: s isallowed?

b. Must L dwaysberedizedasSinE?

There are four possible outcomes. Depending on the outcome, do one of the following:
a If aisyesandbisno, posit theruleL: S => E and proceed to step 4.

b. If aisnoand b isyes, posit theruleL: S <= E and proceed to step 5.

c. If both aand b areyes, posit theruleL: S <=> E and proceed to step 6.

d. If neither isyes, find the other environmentsin which L: S is allowed, combine these into asingle
disunctive environment, and go through step 3 again.

Itisalso possiblethat it is easier to express the constraint on L: S in terms of the environment in which
it is prohibited. In this case, posit theruleL: S / <= E and proceed to step 7. If L: S contains subset
names, it may be necessary to write a separate table to declare as feasible pairs the correspondences
that L: Sisintended to represent (see sections A3.8 and A4.4).

. Compileeach=>rule. TheruleL: S => | ¢c___rc can be paraphrased as "the expressionic L:S rc
isallowed, but L: S in any other context is not allowed.” The strategy for compiling a=> rule to a state

tableisto construct atable that recognizesthe sequencel ¢ L: S rc, forbids any other occurrence of

L: S, and permits any other correspondences to occur anywhere. The steps in building the table are as

follows:

a Makealist of column headers for the table by writing down all the correspondences used in the
expression| ¢ L: S rc (including correspondences with @and subset names). Add @ @to the end of
thelist.

b. Beginning with state 1, add states (rows) and fill in the state transitions in the appropriate cellsin
the table to recognize the expression| ¢ L: S rc. Thefinal symbal in the expression normally should
result in atransition back to state 1, except when backlooping is involved (see step 8 below).

c. Useacolon to mark state 1 asafinal state (that is, 1:). Mark every state that istraversed beforeL: S
isreached as afinal state. Mark the statein which L: Sisrecognized as afinal state. Use aperiod to
mark all states traversed after that point as nonfinal (for instance, 2.). That is, once L: S is encountered
it isnot in the correct environment unless the full right context is found; thus these states cannot be
final.

d. Since L: Sin any other environment is not allowed, fill in the rest of the column for L: S with zeros.
Furthermore, in any state traversed during the recognition of the right context, any correspondence
encountered other than those provided for inr c meansthat L: S isin the wrong context. Thus, the rest
of the cellsfor the states traversed in r ¢ should be filled with zeros.

e. All remaining cellsin the transition table denote successful transitions asfar asthisruleis
concerned. In most cases, these cells are filled with transitions back to the initial state (that is, 1),
except where backlooping occurs (see step 8).

. Compileeach<=rule. TheruleL: S <= I c___rc can be paraphrased as"the expressionic L: =S rc
isnot allowed." The strategy for compiling a<= rule to a state table is to construct a table that
recognizes the sequencel ¢ L: -S rc and forbidsit, while permitting any other correspondences to
occur anywhere. (Note that the strategy for building the <= rule for an insertion, whereL is O (the
NULL symbol), is dlightly different; see section A3.7.) The stepsin building the table are as follows:

a Makealist of column headersfor the table. First, put down L: S. Next, put down L: @ which now
representsL: -S. Next, write down all the correspondencesused in| ¢ andr ¢ (including
correspondences with @and subset names). Add @ @to the end of thelist.

b. Beginning with state 1, add states (rows) and fill in the state transitions in the appropriate cellsin
the table to recognize the expression| ¢ L: @ r c. Thefinal symbol in the expression should result in
failure (that is, the cell representing recognition of the final symbol should contain O (zero)).

c. Useacolon to mark every state as afinal state.

d. All remaining cellsin the trangition table denote successful transitions asfar asthisruleis
concerned. In most cases, these cells are filled with transitions back to the initial state (that is, 1),
except where backlooping occurs (see step 8).

. Compile each <=> rule. The rule may be compiled as two separate state tables, one for the <= rule and
the other for the => rule. Or, the rule may be compiled as a single table that combines the <= and =>

rules. In this case, construct the column headers asin 5a. Then perform steps 5b through 5d to encode
the <= side of the rule. Finally, perform steps 4b through 4e to add the => side of therule. In 4b, add
new states only as needed for the recognition of r c; the recognition of | ¢ isthe same. In 4c, mark as
nonfinal the states added to recognizer c. (Alternatively, steps 4b to 4e can be done before steps 5b to
5d.)

7. Compileeach/<=rule. TheruleL: S /<= I ¢c___rc canbe paraphrased as "the expressionlc L:S rc
isnot allowed." The strategy for compiling a/<=rule to a state table is to construct a table that
recognizesthe sequencel ¢ L: S rc and forbidsit, while permitting any other correspondences to
occur anywhere. The stepsin building the table are as follows:

a. Makealist of column headersfor the table by writing down all the correspondences used in the
expression| ¢ L: S rc (including correspondences with @and subset names). Add @ @to the end of
thelist.

b. Beginning with state 1, add states (rows) and fill in the state transitions in the appropriate cellsin
the table to recognize the expressioni ¢ L: S rc. Thefinal symbol in the expression should result in
failure (that is, the cell representing recognition of the final symbol should contain O (zero)).

c. Useacolon to mark every state as afinal state.

d. All remaining cells in the transition table denote successful transitions asfar asthisruleis
concerned. In most cases, these cells arefilled with transitions back to theinitia state (that is, 1),
except where backlooping occurs (see step 8).

8. Check for backlooping. A backloop isatransition to a state that represents a previous point in the
expression being recognized. The final step in compiling arule (see steps 4e, 5d, and 7d) is to specify
the trangitionsfor al the remaining cellsin the state table that are not part of the environment
expression. Normally these are transitions back to state 1. However, backloops to states other than 1
must be specified if an input pair (or sequence of pairs) is recognized that matches the first symbol (or
sequence of symbols) of the expression| ¢ L: S rc. Transitions must be specified back to the states
that represent the successful recognition of that symbol (or sequence of symbols). A detailed example
of backlooping isgivenin part 2 of section A3.4.

A3.3 Summary of two-level rule semantics

The semantics of the four kinds of two-level rules are now summarized in two ways. First, in figure A5 a
number of paraphrases are given for each rule type. Second, in figure A6 truth tables (asin formal logic) are
given. Note that the <= and => rules have the familiar conditional pattern of formal logic. The <=>ruleisthe
conventional biconditional.

Figure A5 Semantics of two-level rules

L:S=>E "Only but not always."
Lisrealized as Sonly in E
L realized as Sis not allowed in -E
If L:S, then it nmust be in E
Implies L:=Sin Eis permtted.

L:S<=E "Aways but not only."
L is always realized as Sin E
L realized as =S is not allowed in E
If LisinE then it nmust be L:S
Implies L: S may occur el sewhere.

L:S<=>E "Aways and only."
Lis realized as S only and always in E
Both L:S => E and L: S <= E
Implies L:Sis obligatory in E and occurs nowhere el se.

L:S /<= E "Never."

L is never realized as Sin E
L realized as Sis not allowed in E.
If LisinE then it nust be L:-S.

Figure A6 Truth tablesfor two-level rules

R T N N T - +
| There is an L. || I's the rule satisfied? |
[=- - T NN NS |
| Isit realized | Is it in || | | | |
| as S? | E? || LiS=E | LiS<=E | L:S<==E | L:S/<=E |
I S E o S S e e e - B S [
I T | T [l T | T | T | F I
I T | F [l F | T | F | T I
I F | T [l T | F | F | T I
I F | F T | T | T | T I
o m m e m o +

A3.4 Compiling rules with a right context

This section gives step-by-step examples of how to apply the general procedure given in section A3.2 for
compiling rulesinto state tables to rules with only aright context. In the exposition of the following examples,
phrases such as "part4" or "step 4a" refer to the numbered subparts of section A3.2.

(1) Compiling a => rule with a right context

Asan example, we will posit ap: b correspondence preceding +m(strictly, +: 0 m m), where the symbol +
stands for a morpheme boundary. Assume that + is aways deleted in surface forms and can thus be declared as
the default correspondence +: 0. Examples of thep: b correspondence are:

LR ap+na ap+nma ap+ba
SR: abOma apOna apOba

According to the diagnostic questions in part 3, these correspondencesindicate that p is not aways realized as
b before+m(p: p also occurs before +m), but that +misthe only environment in which p: b is allowed.
Therefore, posit a=> rule:

R35 p:b=>__+0m

To compile rule R35 to a state table, follow the stepsin part 4. First (step 4a), make alist of the column
headers, consisting of all the correspondences used inrule R35 plus @ @

p+ma@
bOom@

The order of the columns of a state table do not affect its operation, but it is helpful to the reader to keep the
columnsinthesameorder asic L: S rc sofar aspossible.

Next (step 4b), add rows (representing states) and fill in the cells with transitions to recognize the sequence
p: b +: 0 m m Whenthefina symbol of the sequence (m m) isreached, atransition is made back to state 1.

Next (step 4c), mark state 1 as afinal state (that is, 1:). This alows the table to succeed on any correspondence
that does not occur inL: S rc. Step 4c saysthat every state traversed before and including the state whereL: s
isrecognized ismarked as afinal state. Since p: b isrecognized in state 1, thisisirrelevant. However, all states
traversed after that point must be marked as nonfinal; that is, once p: b isrecognized, it is not in the correct
environment until the entire right context is found. Thus, states 2 and 3 cannot be final.

Next (step 4d), fill in the rest of the column for p: b with zeros, since p: b in any other environment is not
allowed. Also, for all the states traversed during the recognition of the right context, any correspondences
other than those that are part of the right context mean that p: b isin the wrong context. Thus, the rest of the
cellsin rows 2 and 3 must befilled with zeros:

1. 2
2. 0
3. 0

Finally (step 4e), all remaining cells are successful transitions for thisrule and can be filled in with transitions
back to theinitial state (that is, state 1). Note that since the remaining empty cells are in state 1 and do not
involve thefirst correspondence of L: S r ¢, backlooping (part 8) is not involved. Table T35 now givesthe
complete transition table for rule R35.

T35 => table with right context
p+ma@
bO0om@
1: 2111
2. 0300
3.0010

(2) Compiling a <=rule with a right context
Now suppose that thep: b correspondence is found in these forms (rather than the ones above):

LR ap+na ap+ba ap+ba
SR abOma apOba abOba

According to the questions in part 3, these correspondences indicate that p is always realized asb before+m
but +mis not the only environment in which p: b isallowed (p: b also occurs before +b). Therefore, posit a<=
rule:

R36 p:b<=_ _ +0m

To compile rule R36 to a state table, follow the stepsin part 5. First (step 5a), make alist of the column
headers, consisting of p: b, p: @ the correspondences used in the right context, and @ @

pp+m@
b @0 m@

Due to the presence of p: b, p: @meansall other feasible pairswith alexical p. In other words, it represents
p: —b.

Next (step 5b), add rows (states) and fill in the cells with transitions to recognize the sequencep: @ +: 0 m m
When the final symbol of the sequenceis reached (m m), the cell isfilled with zero, indicating failure.

wWN P
w

Next (step 5¢), mark every state asfinal:

pp+ma@
b @0 m@

wh ke
w

Finally (step 5d), all remaining cells denote successful transitions back to the initial state and arefilled in with
ones, with the exception of cells where backlooping applies. To demonstrate backlooping, we will first ignore
itand fill in the table with ones:

T36

WN P
i
RN
e

Thereis aproblem with this state table. As written, table T36 does not work correctly with more than onep in
succession. For instance, given the lexical form app+ma, it will returnappma, without voicing the second p.
Step the example app+ma through table T36 to verify this. When the second p: p is encountered while in state
2, the FST will make atransition back to state 1, where +: 0 and m mare recognized, leaving the FST in state
1. To remedy this, the FST must loop back to state 2 when it encounters p: p:

T36a

But table T36awill till fail to recognize an input form such asap+p+ma. Thisis because when the second p: p
is encountered in state 3, the FST will make atransition back to state 1, again losing the fact that we are in the
environment for the change. The table must be revised so that the FST will loop back to state 2 whenap: p is

encountered in state 3 aswell:

T36b <= table with right context
pp+m@
b @0 m@
1: 12111
2212311
3: 12101

Thisis an example of the explanation given in part 8 of how to handle backlooping. Backlooping is a subtle
but important point, and is the source of many errorsin compiling tables. The name isintended to convey the
ideathat the FST must have transitions (Ioops) back to the states where symbols (or sequences of symbols) of
the expressionl ¢ L: S r ¢ have been recognized. The notion of backlooping transitionsis clearer when the
FST isrepresented as a diagram; see figure A7 (which is equivalent to table T36b, except that transitions back
to state 1 are not drawn). There are two backloops in this FST: from state 2 thereis an arc for p: @back to state
2, and from state 3 there is another arc for p: @back to state 2.

Figure A7 FST with backlooping

[(2

Why didn't we encounter backlooping while writing the state table for rule R35 above? With respect to
backlooping, it may seem that table T35 should be written as follows (where states 2 and 3 have an arc back to
state 2 if ap: b isrecognized):

T35a

1 11
2. 2300
3 10

The answer isthat in this case step 4d overrides backlooping. Rule R35 isa=> rule, which meansthat the
correspondence p: b isdisallowed in any environment other than preceding +m Table T35a, however, would
allow p: b to occur preceding another p: b or preceding the sequence +: 0 p: b. To prevent this, step 4d
requires the p: b column to contain zerosin states 2 and 3.

Asamatter of practicein writing astate table, the analyst should carefully check the column that represents the
first symbol of theexpression| c L: S rc to see which state to loop back to in each state of the table.

Often it does not seem necessary in practice to account for backlooping because of language-specific
phonotactic constraints. Taking the example word app+na discussed above, suppose that the language being
described does not have morphemeslike app; that is, a phonotactic constraint prohibits the sequence vcC. In
such a case, state table T36 (written without backloops) would always work correctly aslong asit was given
Input conforming to the phonotactic constraints of the language. There are two reasons why we recommend
that the user of PC-KIMMO write tables that account for backlooping even when it seems unnecessary.

First, if you are inductively devel oping aphonological analysis, you will not necessarily know all the
phonotactic constraints until the entire analysisis completed. If rules are written with incorrect backloops,
puzzling failures may occur when further data are collected that contain new phonotactic patterns.

Second, it is conceptually cleaner to keep phonotactic constraints separate from the general phonological rules.
Rather than incorporating phonotactic constraints in tables that encode phonological rules, it is better to write
tables so that they are minimally restrictive with respect to phonotactics. The analyst can encode phonotactic
constraints in a set of rules (tables) dedicated specifically to that purpose. For more discussion on expressing
phonotactic constraints, see section A3.16.

(3) Compiling a <=>rule with a right context
Now suppose that thep: b correspondence is found only in forms like these:

LR ap+na ap+ba
SR: abOma apOba

According to the questionsin part 3, these correspondences indicate that p isaways realized asb before +m
and that +misthe only environment in which p: b is allowed. Therefore, posit a<=> rule:

R37 p:b<=>____ +:0m

Aswas explained in part 6 of section A32., a<=> rule can be compiled as two separate state tables, one for the
<=rule and one for the => rule. Thisiswhat has been done to produce state tables T35 and T36b above.
Alternatively, a<=> rule can be compiled as asingletable. To do this (see part 6), first construct the column
headers by following the instructions in step 5a:

pp+m@
b @0 m@

Next perform steps 5b through 5d to construct the <= part of therule:

WN P
N NN
e

Now perform steps 4b through 4e to add the => part of the rule:

T37 <=> table with right context

pp+ma@

b @0 m@
1: 42111
2: 42311
3: 42101
4. 00500
5. 00010

Notice that to recognize p: b and the right context +: 0 m m two states (4 and 5, corresponding to states 2 and
3intable T35) must be added to the table. These states are nonfina states.

Specia attention must be paid to the transitions in states 2 and 3 of table T37. For the p: @column, states 2 and
3 must loop back to state 2, which is the state in the <= part of the rule where p: @ the first symbol of the
expressonlc L:S rc, hasbeenrecognized. Thisisidentical to table T36b. For the p: b column, states 2 and
3 must make atransition to state 4, which is the second state of the => part of therule. Thisis the same
trangition asin state 1.

(4) Compiling a/<=rule with a right context

The fourth rule type, the /<= rule, disallows the correspondence in the specified environment. For example,
rule R38 prohibitsp: b before +m

R38 p:b /<= +0m

The state table that encodes rule R38 must recognize the sequencep: b +: 0 m mand then forbid it. Asthe left
arrow of the /<= operator suggests, the semantics of this rule type is most similar to the <= rule. Whereas rule
R36 above (a<=rule) statesthat p is aways (obligatorily) realized asb before+: 0 mbut may also be realized
asb in some other environment, rule R38 (a/<= rule) states that p is always (obligatorily) prohibited before
+:0 m m but may be realized asb in some other environment.

To compile rule R38 to a state table, follow the stepsin part 7. First (step 7a), make alist of the column
headers needed to recognize p: b and the environment plus @ @

p+ma@
bOom@

Notice that unlike table T36b, which expresses a <= rule, we do not need ap: @column header. Thisis
because table T36b is built to prohibit the sequencep: -b +: 0 m m but the table we are building for a/<=rule
must prohibitp: b +:0 mm

Next (step 7b), add rows (states) and fill in the cells with transitions to recognize the sequencep: b +:0 mm
When the final symbol of the sequenceis reached (m m), the cell isfilled with zero, indicating failure.

WN P
w
o

wh e
w

Finally (step 7d), al remaining cells denote successful transitions and are filled in with ones, with the
exception of cells that meet the conditions of backlooping (part 8). Specifically, the cellsin column p: b for
states 2 and 3 must make a transition back to state 2, since state 2 represents the state where the first symbol
(p: b) of theexpressionl ¢ L: S rc hasbeen recognized.

T38 /<= table with right context

12111
2. 2311
3: 2101
It isinstructive to compare table T38 with both table T35 (for a=> rule) and table T36b (for a<=rule).

A3.5 Compiling rules with a left context

This section gives step-by-step examples of how to apply the general procedure given in section A3.2 for
compiling rulesinto state tables to rules with only aleft context. In the exposition of the following examples,
phrases such as "part 4" or "step 4a" refer to the numbered subparts of section A3.2.

(1) Compiling a => rule with a left context
In this section our example rule states that the correspondence p: b occurs following m+. For example,

LR amtpa amtpa ab+pa
SR anDba anDOpa abOpa

According to the diagnostic questions in part 3, these correspondences indicate that p is not alwaysrealized as
b after m+ (p: p also occurs after m+), but that m+ isthe only environment in which p: b isalowed. Therefore
posit a=>rule:

R39 p:b = m+0 _
To compilerule R39, first (step 4a) make alist of the column headers:

m+p @
mOb @

Next (step 4b), add rows and fill in the cellsto recognize the sequencem m +: 0 p: b:

m+p @

WN P
w

Next (step 4c), mark state 1 asafina state. Also, every state traversed up to and including the state where p: b
isrecognized ismarked as afinal state. Since there is no right context, there are no more states after that point.

Next (step 4d) fill in the rest of the p: b column with zeros, because the p: b correspondence cannot succeed
until the entire left context has been recognized:

WN P
w
[eoNe]

Finally (step 4e), all remaining cells are successful transitions for this rule and can be filled in with transitions
back to theinitia state (state 1), with the exception of cellsthat meet the conditions of backlooping (part 8).
Specifically, the cellsin column m mfor states 2 and 3 must make a transition back to state 2, since state 2
represents the state where the first symbol (m m) of the expressioni ¢ L: S rc has been recognized. Now table
T39 will work correctly with input forms such as amm+pa and am+m¢pa.

T39 => table with left context

(2) Compiling a <=rule with a left context
Now suppose that thep: b correspondence is found in these forms:

LR. amtpa ab+pa ab+pa
SR anDba abOpa abOba

According to the questions in part 3, these correspondences indicate that p is always realized asb after m+, but
m+ is not the only environment in which p: b isallowed (it aso occurs after b+). Therefore, posit a<= rule:

R40 p:b<=m+0 ___

To compile rule R40, first (step 4a) make alist of the column headers, including p: @

m+ppa@
mOb @@

Due to the presence of p: b, p: @meansall other feasible pairswith alexical p. In other words, it represents
p: —b.

Next (step 5b), add rows and fill in the cellsto recognize the sequencem m +: 0 p: @ When the final symbol
of the sequenceisreached (p: @, the cell isfilled with zero, indicating failure.

o

Finally (step 5d), al remaining cells are successful transitions for thisrule, and can be filled in with transitions
back to theinitial state (state 1), with the exception of cells that meet the conditions of backlooping (part 8).
Specificaly, the cellsin column m mfor states 2 and 3 must make a transition back to state 2, since state 2
represents the state where the first symbol (m m) of the expressioni ¢ L: S r ¢ has been recognized. Now table
4 will work correctly with input forms such as anm+pa and am+m+pa.

T40 <= table with | eft context
m+pp@
mOb @@

(3) Compiling a <=>rule with a left context
Now suppose that thep: b correspondence is found only in forms like these:

LR. amtpa ab+pa
SR anDba abOpa

According to the questionsiin part 3, these correspondences indicate that p is alwaysredlized asb after m+, and
m+ isthe only environment in which p: b isallowed. Therefore, posit a<=> rule:

R41 p:b <=>m+0 _

Asisexplained in part 6 of section A3.2, a<=> rule can be compiled as two separate state tables, one for the
<= rule and one for the => rule. Thisiswhat has been done to produce state tables T39 and T40 above.
Alternatively, a<=> rule can be compiled asa single table. To do this (see part 6), first construct the column
headers following the instructions in step 5a:

m+pp@
mOb @@

Next perform steps 5b through 5d to construct the <= part of therule:

Now perform steps 4b through 4e to add the => part of the rule. Since rule R41 has no right context, no new
states need to be added. Simply fill in the column for p: b. Notice that in states 1 and 2 the p: b column must be
filled with zerosjust asit isin rule R39. If we encounter p: @in state 3, then we fail; if we encounter p: b, then

we succeed.

T41 <=> table with left context

(4) Compiling a /<= rule with a left context

The fourth rule type, the /<= rule, disallows the correspondence in the specified environment. For example,
rule R42 prohibitsp: b m m +: 0.

R42 p:b/<=m+0

To compile rule R42 to a state table, follow the stepsin part 7. First (step 7a), make alist of the column
headers needed to recognize p: b and the environment plus @ @

m+p @
mOb @

Next (step 7b), add rows (states) and fill in the cells with transitions to recognize the sequencem m +: 0 p: b.
When the final symbol of the sequenceisreached (p: b), the cell isfilled with zero, indicating failure.

WN P
w

w

Finally (step 7d), all remaining cells denote successful transitions and are filled in with ones with the exception
of cellsthat meet the conditions of backlooping (part 8). Specifically, the cellsin column m mfor states 2 and 3
must make atransition back to state 2, since state 2 represents the state where the first symbol (m m) of the
expression| ¢ L: S rc has been recognized.

T42 /<= table with | eft context

12111

222311

3: 2101

A3.6 Compiling rules with both left and right contexts

This section gives step-by-step examples of how to apply the general procedure given in section A3.2 for

compiling rules into state tables to rules with both aleft and right context. In the exposition of the following
examples, phrases such as"part 4" or "step 4a" refer to the numbered subparts of section A3.2.

(1) Compiling a => rule with left and right contexts
The example rule used in this section states that the correspondence s: z occurs intervocalically. For example,

LR sasa Ssasa
SR saza sasa

According to the diagnostic questions in part 3, these correspondencesindicate that s is not aways realized as
z between vowels (s: s aso occurs between vowels), but that between vowels is the only environment in
whichs: z isalowed. Therefore, posit a=> rule:

R43 s:z =V ___V
To compile rule R43 to a state table, follow the stepsin part 4:

T43 =>table with left and right contexts

1. 2
2. 2
3. 2

While rule R43 contains the correspondence V: V twice, table T43 has only one v: v column header. The single
V: V header serves for both instances of the correspondence in the environment. Having two identical column
headersin atable will result in an error. (See also section A3.8 on using subsets in state tables.)

Notice that states 1 and 2 are final, while state 3 is nonfinal. Also note carefully that accounting for
backlooping requires the transition in state 2 in the v: v column to remain in state 2. Thisis necessary to allow
the correct recognition of words with consecutive vowels, for instance saasa. Less obviousis that when v: v
isrecognized in state 3 the FST must return to state 2 rather than the expected state 1. Thisis necessary to
allow the rule to apply more than once in the same word where the environments overlap. For example,
consider these forms:

LR asasa
SR: azaza

In this example, the second a serves both as the right context of thefirst s: z correspondence and asthe left
context of the second s: z correspondence. Therefore, when it isfirst recognized in state 3 of thetable, a
transition must be made back to state 2 so that the rule can apply again.

(2) Compiling a <= rule with left and right contexts
Now suppose that thes: z correspondence is found in these forms:

LR sasa sasa
SR: saza zaza

According to the questionsin part 3, these correspondences indicate that s isalwaysrealized asz between
vowels, but between vowels is not the only environment in which's: z isallowed (it aso occurs
word-initialy). Therefore, posit a<=rule:

R44 siz <=V ___V
To compile rule R44, follow the stepsin part 5:
T44 <= table with left and right contexts

Vss @
Vz @@

2:

131
3: 111

To account for backlooping, state 2 must have a2 in thev: v column, paralel to table T43. But unlike table
T43, state 3 must have a0 inthe Vv: v column, not a2. Thisis because rule R44 is a <= rule and must disallow

thesequenceV: Vv s: @ V: V. However, table T44 till correctly handles lexical forms such asasasa because
only states 1 and 2 are used.

(3) Compiling a <=> rule with left and right contexts
Now suppose that thes: z correspondence isfound only in an intervocalic position and s: s never is:

LR sasa
SR: saza

According to the questionsin part 3, these correspondences indicate that s is alwaysredlized asz between
vowels, and between vowelsis the only environment in which s: z is allowed. Therefore, posit a<=> rule:

R45 s:z <=V ____V
To compile rule R45, follow the stepsin part 6:

T45 <=> table with left and right contexts

N O NN

Rows 1 through 3 constitute the <= part of the rule (compare rule R44), and rows 1, 2, and 4 constitute the =>
part of the rule (compare rule R43).

(4) Compiling a /<= rule with left and right contexts

The fourth rule type, the /<= rule, disallows the correspondence in the specified environment. For example,
rule R46 prohibitsVv: V s: z V: V.

R46 s;:z/<=V ___V
To compile rule R46 to a state table, follow the stepsin part 7:

T46 /<= table with left and right contexts

A3.7 Compiling insertion rules

The procedure for compiling two-level rulesinto state tablesis dightly different for rules that insert characters.
Compiling a=> insertion rule is the same as described in the previous sections, but compiling a<=rule
requires adifferent strategy. We will demonstrate the procedure for handling insertion rules with an example
from the Hanunoo language of the Philippines. In Hanunoo, the consonant h isinserted to break up a vowel
cluster. This occurs, for instance, when the suffix i isadded to aroot that ends with a consonant; compare the
following forms (Schane 1973:54). (Note that the character 2 is used here to represent glottal stop.)

ROOT ROOT+i

2unum " si x' 2ununi “make it siXx
?usa “one' ?usahi “make it one

In the following two-level representations, the inserted h is represented as corresponding to alexical NULL
symbol (zero):

LR 2unumti ?usa+0i
SR ?unun®i ?usalh

The => rule for h-insertion iswritten as expected:

R47 h-insertion
Och=V+0___ V

and is compiled into a state table in the usual way:

T47 h-ins

PR

Constructing the <= table, however, is not as straightforward. Following the general procedure for compiling
<= rulesto tables, we might expect to construct athe <= table using the column headers 0: h and 0: @ where
0: @isintended to specify 0: =h (that is, alexical 0 corresponding to anything except a surface h):

R48 h-insertion
Och<=V+0___ V
T48 h-insertion
V+00@
VOh @@
1: 21111
2. 23111
3: 21141
4: 01111

Unfortunately, if we submit the lexical input form 2usa+i to rules R47 and R48, both the correct result
?usahi and theincorrect result 2usai will be returned. Why didn't rule R48, the <= rule, force the insertion
of h as expected? The answer isin the meaning of the column header 0: @ What we really want the <= rule to
do isto recognize the absence of an inserted h in the specified environment and then to fail, that is, to prohibit
the sequenceV +: 0 V. In effect this means that the table would have to recognize the correspondence 0: 0 as
an instance of the column header 0: @ However, 0: 0 isnot afeasible pair (and indeed never could be); thus
the column header 0: @cannot specify 0: 0. Asamatter of fact, if there are no other insertion correspondences
in the description, PC-KIMMO will report an error when it tries to interpret table T48, since there would be no
feasible pairs that would match the 0: @column header.

The answer to writing atable that makes h-insertion obligatory (that is, the effect of a<=rule) isthat it is
necessary only to disallow the sequenceVv +: 0 V. Thiscan be easily done with a/<=rule of thisform:

R49 h-insertion
0:0/<=V +0__ V

This rule must be understood in a special way. Although it follows the general syntax of two-level rules
(correspondence, operator, environment), it departs from the normal meaning of two-level rulesin that its
correspondence part, namely 0: 0, isnot afeasible pair. However, its intended meaning is clear when it is
compared to the corresponding => rule (see the rule in the header line in table T47). It smply means that

something must be inserted where the environment line islocated. The => rule providestheh, whichis
inserted at this point. The table that expresses rule R49 looks like this:

T49 h-ins

whke
oN N
P W
e

Now it is obvious that the two rules can be combined as asingle <=> rule.

R50 h-insertion
Och<=V+0___V

T50 h-insertion

V+0@

VOhQ@

1: 2101

2: 2301

3: 0141

4 2000

A3.8 Using subsetsin state tables

Section A1.4 introduced the use of subsets in two-level rules. This section discusses their use in state tables.
Assume that atwo-level description contains these subsets (see section A4.3 on subset declarations):

SUBSET D t
SUBSET P c
SUBSET Vhf i

ds
S

[—

e

In section A1.4 arule using these subsets was introduced, repeated here as rule R51.

R51 Pal atal i zati on
DDP => Vhf

Rule R51 states that the alveolar consonants in subset D may be redlized as the pal atalized consonants in subset
P when they occur preceding the high, front vowelsin subset vhf . Specifically, we want the subset
correspondence D: P to stand for the feasible pairst : c, d:j , and s: S. Trandating rule R51 into a state table is
straightforward:

T51 Pal atal i zati on

However, atwo-level description containing table T51 will produce no correct results unless the feasible pairs
t:c, d:j,ands: Saredeclared explicitly. The pairs must appear as column headersin atable somewherein
the description. Thisistypicaly done by constructing atable specifically for the purpose of declaring special
correspondences. For example, the following table declares the feasible pairs that we want for the column
header D: P:

T52 Pal at al i zati on correspondences
tds @
cj S@

Now the D: P column header in table T51 will recognize all and only the pairs declared in table T52. Similarly,
thefeasible pairsthat vnf : vhf standsfor (thatis,i:i ande: e) must be declared somewherein the
description. Sincein this case the pairs are default correspondences, they will typically beincluded in the table
with al the other default correspondences.

A3.9 Overlapping column headers and specificity

Using subsetsin rules often leads to a Situation where a state table has column headers that potentially overlap.
In such acase, unexpected results may occur. For example, consider thisrule, which statesthat t : ¢ occurs
between any vowel and i :

R53 tic=>V ___ i

A first attempt at writing a state table for rule R53 might look like this:

T53 Vti @
Vci @
1: 2011
2:. 2311
3.0010

Giventhelexica formmat i , table T53 will correctly produce the surface form maci . But given the formmi ti ,
it will fail to produce the expected result ni ci . Thisis because of the interaction of the column headersv: v and
i :i.Becausethefeasiblepairi:i isaninstance of v: v, we might expect that thefirsti intheinput formmiti
would match the v: v column header and cause a successful transition to state 2. Thisis not the case. For each
tablein a PC-KIMMO description, the entire set of feasible pairs must be partitioned among the column
headers with no overlap. Each feasible pair belongs to one and only one column header. When PC-KIMMO
interprets the column headers of atable, it scansthelist of all the feasible pairs and assigns each oneto a
column header. If afeasible pair matches more than one column header, it assignsit to the most specific one,
where the specificity of acolumn header is defined as the number of feasible pairs that matchesit. In order to
see exactly how the feasible pairs are assigned to the column headers of arule, use the show rule command
(see section 4.5.9).

Thusin table T53 thefeasible pairi : i potentialy matches both the column headersv: v andi : i ; but because

i :i ismore specificthanV: v, thepairi: i isassigned to the column header i : i . This means that the column
header v: v stands for all the feasible pairs of vowelsexcepti : i . Thusthe input pairi : i matchesonly the
column header i : i . To work correctly, table T53 must allow i : i to be an instance of V: Vv in the left context by
placinga?2in states 1 and 2 under thei : i header. Note also that the order of the columns has no effect on
which column header an input pair is matched to. Table T53a reflects these changes.

T53a Vti @
Vci @
1:. 2021
2:. 2321
3.0020

Now consider a description that contains a subset Vr d for rounded vowels and a subset vhi for high vowels:

SUBSET Wrd o u
SUBSET Vhi i e ou

Notice that the vhi subset properly includes the vr d subset. Assume that the description contains the following
rule:

R54 t:c => Wrd ___ Vhi
Wefirst write astate table for rule R54 like this:;

T54 Vrd t Vhi @

WN P
N
w

i

oOr Pk

But thefeasible pairso: o and u: u, which match both the vr d: vr d and vhi : vhi column headers, must belong
tothevr d: vrd column, sinceit is more specific. Thusthe vhi column represents only the pairsi : i ande: e.
Thismeansthat alexica input form such asut u will not produce the expected surface form ucu, because the
second u will always match vr d, not vhi . This problem isfixed by including u: u and o: o as column headers
in table T54a

T54a Vrdt Vhi uo @
Vrd c Vhi uo @

The solution, then, in cases of overlapping column headersisto explicitly include as headersin the table the
feasible pairsthat belong to both headers.

It is possible to construct a state table in which afeasible pair matches multiple column headers that have the
same specificity value, making it impossible to uniquely assign the pair to a column. This constitutes an
incorrectly written state table. When the rulesfile containing such a state table is loaded, awarning message is
issued alerting the user that two columns have the same specificity. If the user proceeds to analyze formswith
the incorrectly written table, apair will be assigned (arbitrarily) to the leftmost column that it matches. Correct
results cannot be assured.

A3.10 Expressing word boundary environments

Consider aphonological rule that states that stops are devoiced when they occur in word-final position. For
example,

LR nabab
SR mabap

Assume these subsets for voiced stops (B) and voiceless stops (P):

SUBSET B b d g
SUBSET P pt k

Two-level rules use the BOUNDARY symbol (#) to indicate word boundary:

R55 Devoi ci ng
B.P<=>__ #

The corresponding state table is written with #: # as the column header representing word boundary. Note that
aboundary symbol used in a column header can only correspond to another boundary symbol; that is,
correspondences such as#: 0 areillegal.

T55 Devoi ci

1: 3211
2. 3201
3.0010

Rules and tables that refer to aninitial word boundary are written in asimilar way. Hereisarule for
word-initial spirantization.

R56 Spiranti zation
p:f <=># V

T56 Spiranti zation

PR

(Noticethat sincethefirst symbol of I ¢ L: S rc isinitial word boundary, backlooping isirrelevant.)

A3.11 Expressing complex environmentsin state tables

Section A 1.6 discussed the notational conventions used to express complex environmentsin two-level rules.
Those rules are repeated here with instructions on how to express them in state tables.

As an example we will use avowe reduction rule. It states that a vowel followed by some number of
consonants followed by stress (indicated by ") is reduced to schwa (€). For example,

LR: bab' a banb' a
SR: béb' a bénb' a

In rule R57 we treat the case where there is exactly one or two intervening consonants. Parentheses indicate
that the second consonant is optional.

R57 vie => O

In table T57, the second, optional consonant isimplemented in state 3. The table succeeds when it recognizes
the stress, either in state 3 after finding one consonant, or in state 4 after finding another consonant.

T57 Vowel Reduction

PR

Rule R58 and table T58 specify either zero, one, or two consonants.

R58 Vowel Reduction
v:é =>__ (OO
T58 Vowel Reduction
VC' @
éec' @
1: 2111
2. 0310
3.0410
4. 0010

The only difference from table T57 isfound in state 2 of table T58, where it is allowed to encounter the stress
immediately after the v: & correspondence.

In rule R59 the asterisk indicates zero or more instances of C.

R59 Vowel Reduction

V.é = C

Table T59 succeedsin state 2 either by immediately finding stress or by repeating state 2 to find consonants
until stressis reached.

T59 Vowel Reduction
v

Rule R60 specifies one or more consonants.

R60 Vowel Reduction
V.é => _ CcC

R60 Vowel Reduction

Here state 2 requires that at least one consonant be found. Then state 3 functions like state 2 of the previous
example to repeat consonants until stressis found.

Section A 1.6 discussed multiple environments in two-level rules. In this section the state tables for those rules
are provided. The example used hereisavowel lengthening rule. It states that the correspondence a: & (short
and long a) occursin two distinct environments: when it is stressed (tonic lengthening) or when it occursin the
syllable preceding stress (pretonic lengthening). For example,

LR | adab'ar
SR | adab' ar

First, the tonic and pretonic lengthening rules and tables are written as separate rules:

R61 Pr et oni ¢ Lengt heni ng
a:a = ___ C
T61 Pretoni c Lengt heni ng
aC' @
ac' @

R62 Toni ¢ Lengt heni ng
a.a =" __
T62 Toni ¢ Lengt heni ng
|a@
a @
1: 201
2. 211

Note that in state 2 the 2 under the stress header is due to backlooping, even though we do not expect to have
two stress marks in succession (see section A3.4).

Asdiscussed in section A1.6, rules R61 and R62 are contradictory; they both claim to specify the only

environment in which a: & is allowed. They must be combined into asingle rule, rule R63, which is expressed
as state table T63.

R63 Pret oni ¢ and Toni ¢ Lengt heni ng
aaa=>[_ _C| " ___1]
T63 Pretoni ¢ and Toni ¢ Lengt heni ng
aC' @
ac' @
1. 2141
2.0300
3. 0040
4. 1141

Thereis one key difference between table T63, and tables T61 and T62. Thisisthe change in state 3 where
stress now makes a transition to state 4 rather than back to state 1. Thisis necessary because stress (whichisin
the right context of rule R61) isthefirst symbol of the left context of rule R62. (Note that in state 4 in the
stress column the transition back to state 4 is due to backlooping.)

Rules R64 and R65 and tables T64 and T65 express the same lengthening rules, only using the <= operator.

R64 Pr et oni ¢ Lengt heni ng
aca<=___ C

T64 Pret oni ¢ Lengt heni ng
aaC' @
a@C' @

1: 12111
2212311
3: 12101

R65 Toni ¢ Lengt heni ng
aa<="' __
T65 Toni ¢ Lengt heni ng
'"'aa@
a @@
1. 2111
2: 2101

In table T64 under the a: @header, there are transitions back to state 2 in both state 2 and state 3. Thisisdueto
backlooping.

Rules R64 and R65, being <= rules, do not conflict, since each alowsthe a: & correspondence in
environments other than its own. Nevertheless, if the analyst so chooses, they can be combined into one table:

R66 Pretoni ¢ and Toni ¢ Lengt heni ng
aaa<=[__C| " ___1

T66 Pret oni ¢ and Toni ¢ Lengt heni ng

hone

A3.12 Expressing two-level environments

Section A1.7 discussed the use of two-level environmentsin phonological rules. The two rules developed in
that section to account for Nasal Assimilation and Stop Voicing are repeated here with their state tables (assume
that adefault N: n correspondence is declared el sewhere in the description):

R67 Nasal Assim |l ation
Nm<=> ___ p:
T67 Nasal Assim | ation
N N p
m@eae

1: 3211
23201
3.0010

R68 St op Voi ci ng
p:b <=>:m___
T68 St op Voi ci ng
@pp @
mb @@
1. 2011
2. 1101

Theserules relate the lexica sequence Np to the surface sequence nb. Note carefully that the symbol p: inrule
R67 is expressed as the column header p: @in table T67, and the symbol : min rule R68 is expressed as the
column header @ min table T68. (See section A1.7 on overspecification in rules of thistype.)

Now assume that the lexical sequence Nb isrealized as the surface sequence nb (that is, both lexical Np and No
areredlized as surface nb). This shows that the N: mcorrespondence is found before a surface b that realizes
either alexica p or b. The distribution of the p: b correspondence is the same. Rule R67 then must be revised
asfollows:

R67a Nasal Assim | ation
Nm<=> b

T67a Nasal Assim |l ation

32

Unfortunately, if adescription containing tables T67aand T68 is given the lexical input form aNpa, it produces
not only the expected surface form anba but also the incorrect form anpa. The reason for thisfallureis smilar
to the problem of overspecification discussed in section A1.7. Notice the symmetrical, interlocking relationship
between rules R67a and R68. The environment of each rule isthe surface character of the correspondence part
of the other rule; that is, the environment of rule R67aiis: b, which isthe surface character of thep: b
correspondence of rule R68, and the environment of R68 is: m which is the surface character of the N: m
correspondence of rule R67a. This means, with respect to the lexical form aNpa, that rule R67a does not
requireN to be realized as mbefore ap that is realized as anything other than b, and rule R68 does not require p
to beredlized asb after an Nthat isrealized as anything other than m Thus the form aNpa can pass through the
two rules vacuoudy. Assuming that the analyst is correct in positing surface environments for these two rules,
the only way to fix the problem isto prohibit the sequence N: n p: p. This can be done either by adding the rule
N:n /<= ___ p,orbyincorporating this prohibition into one of the existing tables. For example, we can
revise table T67a as follows:

T67b Nasal Assim | ation
NN@p @
m@bp @

1:. 32111
2231001
3.00100

By including the column header p: p (or perhaps @ p) in table T67b, we can recognize N: @ p: p and force
failure. Now the lexical form aNpa will match only the surface form amba. (Alternatively, table T68 could be
revised to include the column header N: n and fail when the sequenceN: n p: @is recognized.)

A3.13 Rule conflicts

The two main types of rule conflicts are the => (or environment) conflict and the <= (or realization) conflict
(Darymple and others 1987:25). The => conflict arises when two conditions are met: (1) two => rules have
the same correspondence on the left side of the rule, but (2) they have different environments on the right side.
(Thistype of conflict has already been discussed in section A1.6.) For example,

R69 I ntervocalic Voicing
p:b=>V___ V

R70 Voi cing after nasa
p:b=>m___

Since the rule operator => means that the correspondence can occur only in the specified environment, rules
R69 and R70 contradict each other. The simplest resolution of the conflict isto combine the two rulesinto one
rule with a digunctive environment:

R71 Voi ci ng
p:b=>[V__ V| m___]

The state table for rule R71 looks like this:

T71 Voi ci ng

A WN P
NNNN

___ part.

Now assume that rules R69 and R70 have been initialy written as <=> rules:

R72 I ntervocalic Voicing
p:b<=>V___V

R73 Voi cing after nasa
p:b <=>m___

Ther state tables ook like this:

T72 I ntervocalic Voicing

PR

T73 Voi cing after nasa

A description containing tables T72 and T73 will not work, because the => sides of the rules conflict, just like
rules R69 and R70. There are two ways to resolve the conflict between rules R72 and R73. First, the rules can
be separated into their <= parts and => parts, and the => parts combined as above:

R74 I ntervocalic Voicing
p:b<=V__ V

R75 Voi ci ng after nasal
p:b <=m___

R76 Voi ci ng
p:b=>[V____ V| m___]

State tables are easily written for rules R74 and R75 (not included here), and table T71 encodes rule R76 (same
asrule R71).

The second way to resolve the conflict between rules R72 and R73 isto modify the environment of each table
to allow the environment of the other. Tables T72 and T73 arerevised as T72aand T73a

T72a I ntervocalic Voicing
Vppm@
Vb@ma@

1:. 20151
2: 24351
3: 00151
4. 20000
5: 21151

T73a Voi ci ng after nasal
mppVa@
mb @V @

Table T72a contains the column header m mfrom table T73, and table T73a contains the column header Vv: v
from table T72. This enables the sequence m m p: b to pass vacuously through table T72a and the sequence
V:V p: b V: Vto passvacuoudy through table T73a

It should a'so be noted that tables T72a and T73a can be combined into a single table that expressesthe
digunctiverulep:b <=>[Vv ___ V| m___].Thiscanbedone by dispensing with table T73aand
placing azero in the cell at the intersection of row 5 and the p: @column of table T72a. However, when dealing
with very complex rules with perhaps more than one conflict, it may be clearer to keep the rules separate as
shown above.

The second type of rule conflict isthe <= (or realization) conflict. It arises when two conditions are met: (1) the
correspondence parts of two <= rules have the same lexical character but different surface realizations of it, and
(2) the environment of one rule is subsumed by the environment of the other rule. For example, to account for
the following correspondences, we posit rules R7 and r78 (where z stands for a voiced aveopaata grooved
fricative):

LR asa isi
SR aza iZi

R77 I ntervocalic Voicing

s:z <=V ___V

R78 Pal atal i zati on
s:Z<=i __ i

These rules meet both conditions of a<= conflict. First, the lexical characters of their correspondence parts are
the same (namely s), while the surface characters are different (z and z). Second, because i isamember of the

subset v, the environment of rule R77 subsumes the environment of rule R78; thatis,i __ i isaspecific
instance of the more general environmentVv ___ V. The state tables for rules R77 and R78 are as follows:
T77 I ntervocalic Voicing

Vss @

Vz @@

1: 2111
2: 2131
3: 0111
T78 Pal atal i zati on

WN P
oNN
R e
W
R e

Giventhelexica input form asa, only rule R77 will apply and return the correct surface form aza. Given the
lexical formi si , we want rule R78 to apply and produce the surface formi zi , but in fact the rulesfail to
return any result. Thisis because rule R77 disallowss: z between vowels (includingi ' s), whilerule R78
disallowss: z betweeni ' s. Also, the rules cannot produce the surface formi zi , because this contradicts rule
R78, which states that s must be realized as z.

In generative phonology this type of conflict is resolved by ordering the specific rule before the genera rule, in
this case Palatalization before VVoicing. Rule ordering is of course not available in the two-level moddl. To
resolve a<= conflict in atwo-level description, the general rule must be altered to alow (but not require) the
correspondence of the specific rule to occur in its environment. Table T77 must therefore be revised as T77a.

T77a I ntervocalic Voicing
Vsss @

121111

2211311

3301111

In table T77 the column header s: @stands for the set of correspondencess: s ands: z, but in table T77athe
inclusion of the header s: z restricts the meaning of s: @to only s: s. Thus the occurrence of s: z is not

restricted by table T77a. Now s will beredlized asz intheenvironmenti _ i becausetable T77aalowsit
and table T78 requiresit.

A3.14 Comments on the use of => rules

The two major rule types, the <= rule and the => rule, have been described informally as the "obligatory” rule
and the "optiona" rule. The meaning and use of the obligatory <= rule are fairly straightforward, but the use of
the optiona => rulein actual two-level descriptions deserves more comment. There are three waysin which

=> rules are employed.

First, asthe term optional suggests, a=> ruleis used in cases where two surface characters are truly in free
variation, regardless of morphological or lexical context. For example, in many dialects of American Englisht
isin free variation with an alveolar flap D when it occurs after avowel and before an unstressed vowel; for
example, thewordwr i t er can be pronounced either [r'aytér] or [r' ayDér]. Thisis expressed by a=> rule

such as rule R79 (where the absence of the stress symbol (') indicates no stress). Such rules of free variation
aretypically low-level phonetic rules.

R79 Fl appi ng
t:D=>V __V

Second, a=> rule may be used in cases where a correspondence is restricted to certain lexical items or classes
of lexical items (for instance, nouns or verbs), or to certain morphological contexts (for instance, nominative
case). For example, English needsarule for thef : v correspondence in pairs of words such aswi f e and

wi ves, | eaf and! eaves. But thisruleisrestricted to avery small and arbitrary number of lexical items (it
doesnot apply tofife, reef, and so on). The smplest solutionisto writethef: v ruleasa=>ruleand let it
overgenerate and overrecognize. That is, it will generate and recognize nonwords such aswi f es (the plural of
wi fe)andfives (theplurd of fife). For purposes of testing atwo-level description, the files of test data
should contain only well-formed words.

In generative phonology the solution to this problem isto mark the lexical entries of thewordswi f e, | eaf

and so on for a"positive rule exception,” which says that only words so marked can undergo thef : v rule. The
lexical component of PC-KIMMO does not alow lexical entries to be so marked for lexical features. However,
the same effect can be produced by introducing a special character (often called a diacritic) in the lexical forms
of exceptiona words. This character serves asthe "trigger" for certain rulesto apply. Thuswi f e and | eaf
could be given the lexica formswayf * and 1 i yf* whilefife andreef would havethelexica formsf ayf
andriyf. Thef: v rulewould then be written like this (where +z stands for the plural morpheme):

R80 fiv<=>___ *:0+0z

While this solution works, it has the undesirable effect of positing lexical representations that contain
nonphonological elements. Many linguists would reject such representations on theoretical grounds. (A similar
solution isto posit lexical forms such aswayF and 1 i yF and arule for F: v. The same linguistic objections

apply.)

Third, a=> ruleisused to "clean up" <= rules. Thisis anonobvious but very important use of => rules. For
example, assume that atwo-level description contains two obligatory rules for lengthening, namely rules R64
and R65 in section A1.6 for pretonic and tonic lengthening. While these rules may express intuitively that
lengthening applies obligatorily in the specified environments, running PC-KIMMO with just these two rules
will result in overgeneration. Because <= rules do not restrict the occurrence of the correspondence in other
environments, rules R64 and R65 will produce forms with the a: & correspondence in environments where
they do not occur. For example, given the lexical input | abad' ar , rules R64 and R65 will return both

| abad' ar (correct) and | abad' ar (incorrect). To prevent thistype of overgeneration, <= rules must be
accompanied by analogous => rules. Thus when rule R63 is added to the description containing rules R64 and
R65, only correct surface forms will be generated.

Asapractical procedurein developing atwo-level description, the user will typically write all the obligatory <=
rules for a given correspondence first. Then to correct the resulting overgeneration, the user must write asingle
=> rule for the correspondence; it must contain as a multiple environment (to avoid => conflicts) all the
contexts of the <= rules for the correspondence.

As another example of the use of => rules as "clean-up" rules, consider again an example used in section A1.6
where the vowel of the ultimate syllable of aword is lengthened unlessit is schwa, in which case the vowel of
the penultimate syllable islengthened (for example, mamian and manminé). Assume these subsets:

SUBSET V i aué
SUBSET VIing 1 & U

and these special correspondences:
Lengt heni ng correspondences
i au@
iau@

Following the procedure described above, assume that thisis an obligatory process. Here isthe <= rule and its
state table:

R81 Lengt heni ng
V:Ving <= C(é)#
T81 Lengt heni ng
Y VCé# @
Ving @Cé # @
1. 1 21111
2: 1 23111
31 21401
4: 1 21101

Now to prevent the overgeneration of ill-formed surface forms such as mamin and maniané, this "clean-up” =>
rule must be included:

R82 Lengt heni ng
V:Ving => C(é)#
T82 Lengt heni ng
Y Cé# @
VIng C é #&@
1. 2 1111
2. 0 3000
3. 0 0410
4. 0 0010

A3.15 Comments on the use of mor pheme boundaries

In standard generative phonology, a phonological rule that applies to the segments XY also appliesto X+Y,
where + indicates a morpheme boundary (Chomsky and Halle 1968:364). In other words, a phonological rule
that applies within amorpheme is assumed also to apply across morpheme boundaries. Thusit is not necessary
to include optional morpheme boundariesin rules. Clearly two-level rules can aso be written without optional
morpheme boundaries; but state tables must explicitly include a morpheme boundary column even if they are
optional at each point in the input string. To make a morpheme boundary completely optional in atable, smply
loop back to the current state in each state of the table. For example, hereisarule and table for intervocalic
voicing:

R83 I ntervocalic voicing
s:z It;=gt; V___ V
T83 I ntervocalic voicing
V s s + @
V z @ 0 @
1. 2 0 1 1 1
222 4 3 2 1
3: 00 1 3 1
4. 2 0 0 4 O

(Notice that rows 1--3 encode the <= part of the rule and rows 1--2 and 4 encode the => part.) Thistable will
allow a morpheme boundary at any point in the lexical form, for instance sa+za and saz+a.

It should be noted that generative descriptions do use explicit morpheme boundariesin rules; in such casesthe
rule only appliesin the presence of the boundary. Often thisis doneto limit the rul€'s application to a specific
morpheme by actually "spelling out” the morpheme in the rul€'s environment. Thistrick is necessary also in
PC-KIMMO, since PC-KIMMO does not allow the application of rulesto be limited to certain lexical items by
means of lexical features. For example, the English prefix i n+ hasthe alomorphsi | + andi r + in words such
asillegal andirregul ar (comparei nt ol er abl e). But we do not want to write arule that changesn to!l or

r everywhere (compareunl awf ul , i nl et, enl ar ge, unr eal). Therefore we write the => rule and table for
n: | to limit the application of theruleto the lexica formi n+. (The rule could be made even more specific by
requiring the prefix to be word-initial.)

R84 nl =i __ +l
T84 i n + | @
i I 01 @

1. 2 1 1 1 1
222 3 1 1 1

3. 00 4 00O

5. 0 0 0 1 O

A3.16 Expressing phonotactic constraints

In section A3.4 we recommended that tables should be written without incorporating phonotactic constraintsin
them. As amatter of practice, this approach may result in less time spent debugging a set of rules. But more
importantly, alinguistic description should distinguish between phonological rules (correspondences between
lexical and surface characters) and phonotactic constraints (restrictions on permitted sequences of characters).
For instance, just as the phonological description of English includes alophonic rules stating the distribution of
aspirated and unaspirated voiceless stops, it also includes phonotactic constraints such as restrictions on
possible word-initial consonant clusters.

As an example of how to encode phonotactic constraints as state tables, consider alanguage that allows words
of the phonological shape CV(C)CV(C). That is, aword minimally consists of two open (CV) syllables, each
of which can optionally be closed by a consonant. Possible words are baba, banba, banbam and so on. The
following state table restricts al words to this pattern:

T85 CV(C)CV(C) pattern

\%
@

SIS
Q0
@®

PNoURrLNE
PRrOOOOON
co~N~NohOR
o~NoOUThWN R

QWO OOUITOWER

By using the column headers C. @and v: @rather than C: Cand V: v, table T85 is a statement of phonotactic
congtraints on lexical forms, not surface forms. Phonological rules such as deletions could result in surface
forms that do not conform to the lexical-level phonotactic pattern. To alow for diacritics such as stress ('), the
@ @columnin table T85 ignores al symbolsthat are not either consonants or vowels. Thus aword such as
bab' a isalowed by the table.

As another example, we will attempt to describe the constraints on initial consonant clustersin English. First
we will define the following subsets for voiceless stops (P), liquids (L), and nasals (N):

SUBSET P pt k ¢
SUBSET L | r
SUBSET N mn

We want to allow word-initial clusters of the following types: sP, sL, sN, sPL, and PL. These constraints on
clusters at the lexical level are encoded in table T86.

nant cluster constraints

_|
o)
o
S
o
1
2.
-
=3
o
o
=
o
o

1. 21111111
2. 13455152
3.00455103
4. 00050104
5. 00000105

Table T86 will allow the lexical forms of wordssuch asspit, slit, snip, prick,click, split, string,
and so on, but disallow sbi t, sl pit, spnit, m ik, and soon. Unfortunately, it will also allow nonoccurring
wordssuchassrit, tlick,andsklit (thoughscl doesoccur inwords of Greek origin, for instance

scl er a). To disalow these, another table can encode refinements to the above table:

T87 More initial consonant cluster constraints
#st klr NVC@
#OQOOQQ@@@

PoONR

(Note that tables T86 and T87 disallow the clusters sph and sv, which occur in words of foreign origin such
assphere andsvel te.)

A4 Writing the rules file

A4.1 The ALPHABET

A4.2 NULL, ANY, and BOUNDARY symbols
A4.3 Subsets

A4.4 Rules

A4.5 Example of arulesfile

Figure A8 The skeleton of a PC-KIMMO rulesfile

Figure A9 Samplerulesfile

This section contains instructions on how to write the rulesfile for the PC-KIMMO program (a more detailed
specification of the rulesfileisfound in section 4.7.1). We will develop asample rulesfile for a set of
hypothetical data.

The general structure of the rulesfileisalist of declarations composed of a keyword followed by data. The set
of valid keywordsin arulesfile includes COMMENT, ALPHABET, NULL, ANY, BOUNDARY, SUBSET,
RULE, and END. The COMMENT, SUBSET and RULE declarations are optional and also can be used more
than oncein arulesfile. The END declaration is also optional, but can only be used once.

The COMMENT declaration (new in PC-KIMMO version 2) sets the comment character used in the rulesfile,
lexicon files, and grammar file. The COMMENT declaration can only be used in the rulesfile, not in the
lexicon or grammar file. The COMMENT declarationis optional. If it is not used, the comment character is set
to ; (semicolon) as a default.

The ALPHABET declaration must either occur first in thefile or follow one or more COMMENT declarations

only. The other declarations can appear in any order. The COMMENT, NULL, ANY, BOUNDARY, and
SUBSET declarations can even be interspersed among the rules. However, these declarations must appear
before any rule that uses them or an error will resullt.

To begin creating arulesfile, use your text editor or word processing program to create afile with the
extension .RUL (for example, SAMPLE.RUL). When you save the file to disk, be sure to save it as plain text
(ASCII). We aso recommend that you use an editor that handles column blocks; this makes manipulating state
tables much easier. Type the basic skeleton of a PC-KIMMO rulesfile as shown in figure A8 (atemplate of a
rulesfileisalso available in the file RULES.RUL on the PC-KIMMO release diskette):

Figure A8 The skeleton of aPC-KIMMO rulesfile

COMMVENT
ALPHABET
NULL

ANY
BOUNDARY
SUBSET
RULE
END

Comments can be added to the rulesfile that are ignored by PC-KIMMO. The default comment delimiter
character is semicolon (;), but can be changed by using the COMMENT declaration. Anything on aline
following a semicolon is considered a comment and isignored. Extra spaces and blank lines are also ignored.

A4.1 The ALPHABET

Therulesfile must first declare the alphabet. Thisisthe entire set of symbols (characters), both lexical and
surface, used by the rules and lexicon. The ALPHABET declaration must either occur first in the file or follow
one or more COMMENT declarations only. It isfollowed by any number of lines of symbols, each separated
by at least one space. For example,

ALPHABET

pt kbdgmnnge¢j sSzZhlrwy
i eaoui éaodid

4

The alphabet can consist of any alphanumeric characters, including those available in the extended character set
on IBM PC-compatible computers. Uppercase and lowercase are considered distinct characters. Nonal phabetic
characterssuchass, &, !, ', #, and + may aso be used. In the above a phabet, + indicates amorpheme
boundary and' indicates stress. In this section, the examples printed in typewriter style use only those
characters available on IBM PC compatible computers.

An alphabetic symbol can also be amultigraph, that is, a sequence of two or more characters. The individual
characters composing a multigraph do not necessarily have to aso be declared as alphabetic characters. For
example, an aphabet could include the characters s and z and the multigraph sz% but not include%as an
aphabetic character. Note that a multigraph cannot also be interpreted as a sequence of the individual characters
that compriseit. For example, if you declaret , h, and t h as aphabetic symbols, then thet h in aword such as
r at hol e will match only the digraph t h, not the sequencet plush.

A4.2 NULL, ANY, and BOUNDARY symbols

Next, the NULL (empty or zero) symbol is declared. Any character not aready in the alphabet can be chosen,
but for obvious reasons o (zero) istypically used. The NULL symbol is used for deletions, for instance h: 0,
and insertions, for instance 0: h. The NULL symbol is declared by including thisline:

NULL O

Next, the ANY ("wildcard") symbol is declared. Again, any character not already in the alphabet can be
chosen; in this book we use @("at" sign). The ANY symbol is declared by including thisline:

ANY @

Next, the BOUNDARY (word boundary) symbol is declared. Again, any character not aready in the al phabet
can be chosen; in this book we use # (crosshatch or pound sign). The BOUNDARY symbol is declared by
including thisline:

BOUNDARY #

A4.3 Subsets

Next in the rulesfile the subsets, if any, are declared. A subset declaration is composed of the keyword
SUBSET followed by a subset name followed by alist of subset characters. A subset name can be any
alphanumeric string (one or more characters, no spaces) so long asit is unique; that is, it cannot be asingle
character aready declared in the a phabet. Uppercase characters are useful for subset names because they are
usually distinct from their lowercase equivalents. All characters defined as belonging to a subset must also be
in the complete alphabet. Subsets are declared by including lines such as these:

SUBSET C
SUBSET V
SUBSET VI ng
SUBSET Cvd
SUBSET Qal v
SUBSET Opal
SUBSET Ovd
SUBSET Ovl

A4.4 Rules

Therest of the rulesfile consists of therules. A rule declaration is composed of the keyword RULE followed
by the rule name, number of states, number of columns, and the state table itself. The rule nameisenclosed in
apair of identical delimiter characters such as double quotes. The rule name has no effect on the operation of
thetable. It actually can contain any information, but by convention we use it for the name and the two-level
notation of therule. It isaso useful to include a sequence number for each rule, asrules are referred to by
number in some of the diagnostic displays for rule debugging. Notice that the horizontal and vertical lines
printed in the tables shown in this chapter are not present in an actual rulesfile.

gmnng¢j sSzZhlrwy

S S CQ

=)
(o]
N

rwy

o—oo oo
TQ Ve oY X
WNNN3JZOOCT

T oW T T TO

By common convention, the first rules listed are the tables of default correspondences, though these
correspondences can be listed anywhere in the file. For the sake of consistency, it is best to place al the default
correspondences in these tables even if they also occur in other tables. The possible redundancy has no effect
on the operation of the tables. Tables of default correspondences for the alphabet given in section A4.1 ook
likethis:

RULE "1 Consonant defaults" 1 17
pt kbdgmnngszhlrwy@@
ptkbdgmnngszhlrwy@
1: 111111111 11111111
RULE "2 Vowel s and other defaults" 1 8
i eaou' + @
i eaou' 0@
1: 11111111

The two tables could be combined into one; consonants and vowels have been separated here for increased
readability. Notice that the morpheme boundary symbol (+) is deleted by default; that is, it has no surface
realization other than 0.

After the tables of default correspondences come the rules for special correspondences. The rules devel oped
below account for examples such as these:

LR: s'ati s' adi bab' at bab' ad
SR s' aci s'dji bab' at bab' at

These rules account for Palatalization:

RULE "3 Pal atalization correspondences"” 1 5

tdsz @
¢j Sz@

1: 11111

RULE "4 Pal atalization, GCalv:Opal It;=gt; _ i" 3 4

Calv Galvi @
pal @ i @

1. 3 2 11

2: 3 2 01

3. 0 0 10

Rule4 isapalataization rule that states that the alveolar consonants are realized as palatalized consonants
beforei . Because rule 4 uses subsets, the feasible pairs represented by the correspondence Gal v: Opal must
be explicitly declared. Rule 3 contains these correspondences which are relevant only to rule 4. The specid
correspondences from all the rules in the description could be combined into one table (or they could even be
combined with the tables of default correspondences). However, for readability and to make it easier to modify
and debug the rulesfile, we recommend that a separate table of specia correspondences be kept with each rule
that uses subsets.

Rules 5 and 6 state that vowels are lengthened when they are stressed (that is, follow ') and precede alexical
voiced consonant (that is, amember of the subset cvd).

RULE "5 Lengt heni ng correspondences” 1 6
aei ou@

e

T 0da
111

= @

a
1. 1

RULE "6 Vowel Lengthening, V:Ving It;=gt; ' _Cvd:" 45
' V Cvd

ng

PORPQ
SES NG

ronE
orhOL<

@
1
3
1
0

ONDNN T

The environment of rule 6 contains the correspondence Cvd: @rather than cvd: Ccvd because of rules 7 and 8,
which devoice obstruents word finally.

RULE "7 Devoi ci ng correspondences” 1 5
bdgz @

T
=

ing, Ovd:Ovl It;= gt; # 3 4

Therulesfile optionally ends with aline containing only the word END. Any materia in thefile after thisline
isignored by PC-KIMMO.

END

A4.5 Example of arulesfile

Asaready model for the format of arulesfile, the example devel oped above isrepeated in its entirety in figure
A9. Thisfileisfound on the PC-KIMMO release diskette in the SAMPLE subdirectory.

Figure A9 Samplerulesfile

ALPHABET

pt kbdgmnnge¢j sSzZhlrwy

i eaoul éadd

+
NULL O
ANY @
BOUNDARY #
SUBSET C
SUBSET V
SUBSET VI ng
SUBSET Cvd
SUBSET Cal v
SUBSET Opal
SUBSET Ovd
SUBSET Ovl
END

gmnng¢j sSzzZhlrwy

S o Cc Qo

=
«
N
-

wy

oo Mmoo
~Q (e o X
W NNN3IOOOT

T o0 +TTO T TO

RULE "1 Consonant defaults"
pt kbdgmn

N N
kT
<<
IS

o
.
=X
o
o
R Q
=
=S
N

== =
Rs =

1:

RULE "2 Vo other defaults" 1 8

-

O OWn

1:

RULE "3 Pal atalization correspondences"” 1 5
tdsz @
¢cj SZz@
1: 11111
RULE "4 Pal atalization, GCalv:Opal It;=gt; _ i" 3 4
Calv Galvi @
Cpal @
1. 3 2
2: 3 2
3. 0 0

ROk —
orr@g

RULE "5 Lengt heni ng correspondences” 1 6
aei ou@

e

T 04
111

= @

a
1. 1

RULE "6 Vowel Lengthening, V:Ving It;=gt; ' _Cvd:" 45
' V ovd @
ng

robE
orhOL<

ocrwkr@g
PORPQ
orrrQg

ONDNN T

RULE "7 Devoi ci ng correspondences” 1 5
bdgz @
pt ks @
1: 11111
RULE "8 Final Devoicing, Ovd:Ovl It;=gt; __ #" 3 4
Ovd Ovd # @

ol @ # @

— O
— O

NN O

END

	A1 Understanding two-level rules
	A2 Implementing two-level rules
	A3 Compiling two-level rules
	A4 Writing the rules file

