Appendix B
Two-level Phonology Revisited

Last modified October 20, 1995

Bl Introduction to two-level phonology

e B1.1 Computational and linguistic roots

e B1.2 Two-leve rule application

e B1.3 How atwo-level description works

e B1.4 With zero you can do (almost) anything

B2 Ruleinteraction in two-level phonology

B2.1 Ordered rules versus two-level rules
B2.2 Multiple application

B2.3 Deletion and insertion rules

B2.4 Mutually bleeding rules

B2.5 Input feeding rules

This chapter provides a general introduction to two-level phonology and a guide to handling interactions
among rules. While chapter 3 of the first book on PC-KIMMO (Antworth 1990, now available as Appendix A)
focused on how to trandate two-level rulesinto finite state tables, this chapter argues that two-level phonology
is an important phonological formalism not only becauseit is computationally tractable but also because it
offersalinguistically coherent aternative to generative phonology.

B1 Introduction to two-level phonology[fn1]

Two-level phonology isalinguistic tool developed by computational linguists. Its primary useisin systems
for natural language processing such as PC-KIMMO. This section describes the linguistic and computational
basis of two-level phonology.

B1.1 Computational and linguistic roots

Asthefields of computer science and linguistics have grown up together during the past several decades, they
have each benefited from cross-fertilization. Modern linguistics has especially been influenced by the formal
language theory that underlies computation. The most famous application of formal language theory to
linguistics was Chomsky's (1957) transformational generative grammar. Chomsky's strategy was to consider
severa types of formal languages to seeif they were capable of modeling natural language syntax. He started
by considering the simplest type of formal languages, called finite state languages. As a general principle,
computational linguiststry to use the least powerful computational devices possible. Thisis because the less
powerful devices are better understood, their behavior is predictable, and they are computationally more
efficient. Chomsky (1957:18ff) demonstrated that natural language syntax could not be effectively modeled as
afinite state language; thus he rejected finite state languages as atheory of syntax and proposed that syntax
requires the use of more powerful, non-finite state languages. However, there is no reason to assume that the
same should be true for natural language phonology. A finite state model of phonology is especially desirable
from the computational point of view, since it makes possible a computational implementation that isssmple
and efficient.

While various linguists proposed that generative phonological rules could be implemented by finite state
devices (see Johnson 1972, Kay 1983), the most successful model of finite state phonology was devel oped by

Kimmo Koskenniemi, a Finnish computer scientist. He called his model two-level morphology (Koskenniemi
1983), though his use of the term morphology should be understood to encompass both what linguists would
consider morphology proper (the decomposition of wordsinto morphemes) and phonology (at least in the
sense of morphophonemics). Our main interest in this article is the phonological formalism used by the
two-level model, hereafter called two-level phonology. Two-level phonology tracesits linguistic heritage to
‘classical’ generative phonology as codified in The Sound Pattern of English (Chomsky and Halle 1968). The
basic insight of two-level phonology is due to the phonologist C. Douglas Johnson (1972) who showed that
the SPE theory of phonology could be implemented using finite state devices by replacing sequentia rule
application with smultaneous rule application. At its core, then, two-level phonology isarule formalism, not a
complete theory of phonology. The following sections of this article describe the mechanism of two-level rule
application by contrasting it with rule application in classical generative phonology. It should be noted that
Chomsky and Halle's theory of rule application became the focal point of much controversy during the 1970s
with the result that current theories of phonology differ significantly from classical generative phonology. The
relevance of two-level phonology to current theory is an important issue, but one that will not be fully
addressed here. Rather, the comparison of two-level phonology to classical generative phonology is done
mainly for expository purposes, recognizing that while classical generative phonology has been superseded by
subsequent theoretical work, it constitutes a historically coherent view of phonology that continues to influence
current theory and practice.

One feature that two-level phonology shareswith classical generative phonology islinear representation. That
is, phonological forms are represented as linear strings of symbols. Thisisin contrast to the nonlinear
representations used in much current work in phonology, namely autosegmental and metrical phonology (see
Goldsmith 1990). On the computational side, two-level phonology is consistent with natural language
processing systems that are designed to operate on linear orthographic inpuit.

B1.2 Two-level rule application

We will begin by reviewing the formal properties of generative rules. Stated succinctly, generative rules are
sequentially ordered rewriting rules. What does this mean?

First, rewriting rules are rules that change or transform one symbol into another symbol. For example, a
rewriting rule of theforma --> b interprets the relationship between the symbolsa and b as adynamic
change whereby the symbol a is rewritten or turned into the symbol b. This meansthat after this operation
takes place, the symbol a no longer 'exists,’ in the sense that it is no longer available to other rules. In
linguistic theory generative rules are known as process rules. Process rules attempt to characterize the
relationship between levels of representation (such as the phonemic and phonetic levels) by specifying how to
transform representations from one level into representations on the other level.

Second, generative phonological rules apply sequentially, that is, one after another, rather than applying
simultaneously. This means that each rule creates as its output a new intermediate level of representation. This
intermediate level then serves asthe input to the next rule. As a consequence, the underlying form becomes
Inaccessible to later rules.

Third, generative phonological rules are ordered; that is, the description specifies the sequence in which the
rules must apply. Applying rules in any other order may result in incorrect output.

As an example of aset of generative rules, consider the following rules:

(1) Vowel Rai sing
e-->i / ___COIi

(2) Pal atal i zati on
t -->c/ i

Rule 1 (Vowel Raising) states that e becomes (isrewritten as) i in the environment preceding G (whereC
stands for the set of consonants and C_0 stands for zero or more consonants). Rule 2 (Palatalization) states that
t becomesc precedingi . A sample derivation of forms to which these rules apply looks like this (where UR
stands for Underlying Representation, SR stands for Surface Representation):[fn2]

UR: tem
(1) tim
(2) cim
SR cim

Notice that in addition to the underlying and surface levels, an intermediate level has been created as the result
of sequentially applying rules 1 and 2. The application of rule 1 produces the intermediate formti ni , which
then serves asthe input to rule 2.

Not only are these rules sequential, they are ordered, such that rule 1 must apply beforerule 2. Rule 1 hasa
feeding relationship to rule 2; that is, rule 1 increases the number of forms that can undergo rule 2 by creating
more instances of i . Consider what would happen if they were applied in the reverse order. Given the input
formtenm , rule 2 would do nothing, since its environment is not satisfied. Rule 1 would then apply to
produce the incorrect surfaceformti m .

Two-level rules differ from generative rulesin the following ways. First, whereas generative rules apply in a
sequential order, two-level rules apply ssimultaneoudly, which is better described as applying in parald.
Applying rulesin parale to an input form means that for each segment in the form all of the rules must apply
successfully, even if only vacuously.

Second, whereas sequentially applied generative rules create intermediate levels of derivation, simultaneoudly
applied two-level rulesrequire only two levels of representation: the underlying or lexical level and the surface
level. There are no intermediate levels of derivation. It isin this sense that the model is called two-level.

Third, whereas generative rules relate the underlying and surface levels by rewriting underlying symbols as
surface symbols, two-level rules express the relationship between the underlying and surface levels by positing
direct, static correspondences between pairs of underlying and surface symbols. For instance, instead of
rewriting underlying a as surfaceb, atwo-level rule states that an underlying a correspondsto a surfaceb .
The two-level rule does not change a intob, so a isavailable to other rules. In other words, after atwo-level
rule applies, both the underlying and surface symbols still 'exist.’

Fourth, whereas generative rules have access only to the current intermediate form at each stage of the
derivation, two-level rules have access to both underlying and surface environments. Generative rules cannot
'look back' at underlying environments or ‘look ahead' to surface environments. In contrast, the environments
of two-leve rules are stated as | exical-to-surface correspondences. This means that atwo-level rule can easily
refer to an underlying a that correspondsto asurface b, or to asurfaceb that corresponds to an underlying a.
In generative phonology, the interaction between apair of rulesis controlled by requiring that they apply ina
certain sequentia order. In two-level phonology, rule interactions are controlled not by ordering the rules but
by carefully specifying their environments as strings of two-level correspondences.

Fifth, whereas generative, rewriting rules are unidirectional (that is, they operate only in an underlying to
surface direction), two-level rules are bidirectional. Two-level rules can operate either in an underlying to
surface direction (generation mode) or in a surface to underlying direction (recognition mode). Thusin
generation mode two-leve rules accept an underlying form asinput and return a surface form, whilein
recognition mode they accept a surface form as input and return an underlying form. The practical application
of bidirectional phonological rulesis obvious: acomputational implementation of bidirectional rulesis not
limited to generation mode to produce words; it can also be used in recognition direction to parse words.

B1.3 How a two-level description works

To understand how atwo-level phonological description works, we will use the example given above
involving Raising and Palatalization. The two-level model treats the relationship between the underlying form
teni and the surfaceformci m asadirect, symbol-to-symbol correspondence:

UR: t emi
SR: ci mi

Each pair of lexical and surface symbolsis a correspondence pair. We refer to a correspondence pair with the
notation <underlying symbol>:<surface symbol>, for instancee: i and m m There must be an exact
one-to-one correspondence between the symbols of the underlying form and the symbols of the surface form.

Deletion and insertion of symbols (explained in detail in the next section) is handled by positing
correspondences with zero, a null segment. The two-level model uses a notation for expressing two-level rules
that issimilar to the notation linguists use for phonological rules. Corresponding to the generative rule for
Palatalization (rule 2 above), here isthe two-level rulefor thet : ¢ correspondence:

(3) Pal atal i zati on
t:c <=>___ @i

Thisruleis astatement about the distribution of the pair t : ¢ on the left side of the arrow with respect to the
context or environment on the right side of the arrow. A two-level rule has three parts: the correspondence, the
operator, and the environment. The correspondence part of rule 3isthe pair t : ¢, which isthe
correspondence that the rule sanctions. The operator part of rule 3 is the double-headed arrow. It indicates the
nature of the logical relationship between the correspondence and the environment (thus it means something
very different from the rewriting arrow --> of generative phonology). The <=> arrow is equivalent to the
biconditional operator of formal logic and means that the correspondence occurs aways and only in the stated
context; that is, t : ¢ isalowedif and only if itisfound inthecontext __ @i . In short, rule 3 is an obligatory
rule. The environment part of rule 3 is everything to the right of the arrow. The long underline indicates the
gap wherethe pair t : ¢ occurs. Notice that even the environment part of theruleis specified as two-level
correspondence pairs.

The environment part of rule 3 requires further explanation. Instead of using a correspondence such asi : i , it
uses the correspondence @i . The @symbol is a specia ‘wildcard' symbol that stands for any phonological
segment included in the description. In the context of rule 3, the correspondence @i standsfor all the feasible
pairs in the description whose surface segment isi , inthiscasee: i andi : i . Thus by using the
correspondence @i , we allow Palatalization to apply in the environment of either alexical e or lexica i . In
other words, we are claiming that Palatalization is sensitive to a surface (phonetic) environment rather than an
underlying (phonemic) environment. Thus rule 3 will apply to both underlying formstim andtem to
produce a surface form with an initia c.

Corresponding to the generative rule for Raising (rule 1 above) isthe following two-level rulefor thee: i
correspondence:

(4) Vowel Rai sing
eli <=>_ CC @i

(Theasterisk in C: ¢+ indicates zero or more instances of the correspondence C:) Similar to rule 3 above,
rule 4 uses the correspondence @i in its environment. Thus rule 4 states that the correspondencee: i occurs
preceding asurfacei , regardless of whether it isderived from alexical e or i . Why isthis necessary?
Consider the case of an underlying form such aspemeni . In order to derive the surface form pi mi mi, Raising
must apply twice: once beforealexical i and again before alexical e, both of which correspond to asurfacei .
Thusrule 4 will apply to both instances of lexica e, capturing the regressive spreading of Raising through the
word.

By applying rules 3 and 4 in parallel, they work in consort to produce the right output. For example,

UR: t e m i
I I I I
Rul es 3 4 | |
T N B
SR: c i m i

Conceptually, atwo-level phonological description of adata set such as this can be understood as follows.
Firgt, the two-level description declares an aphabet of all the phonological segments used in the datain both
underlying and surface forms, in the case of our example,t, m ¢, e, andi. Second, the description
declares a set feasible pairs, which isthe complete set of al underlying-to-surface correspondences of
segments that occur in the data. The set of feasible pairs for these data is the union of the set of default
correspondences, whose underlying and surface segments are identical (namely t:t, mm e:e, andi:i)
and the set of special correspondences, whose underlying and surface segments are different (namely t : ¢ and
e: i). Notice that since the segment ¢ only occurs as a surface segment in the feasible pairs, the description will
disalow any underlying form that containsac.

A minimal two-level description, then, consists of nothing more than this declaration of the feasible pairs.
Sinceit contains al possible underlying-to-surface correspondences, such a description will produce the
correct output form, but because it does not constrain the environments where the special correspondences can
occur, it will also alow many incorrect output forms. For example, given the underlying formt eni , it will
produce the surfaceformstenmi, tim, ceni, andcini, of whichonly thelastiscorrect.

Third, in order to restrict the output to only correct forms, we include rulesin the description that specify
where the special correspondences are alowed to occur. Thusthe rules function as constraints or filters,
blocking incorrect forms while allowing correct forms to pass through. For instance, rule 3 (Palatalization)
statesthat alexical t must berealized asasurfacec whenit precedes@i ; thus, given the underlying form
teni it will block the potential surface output formsti m (because the surface sequencet i is prohibited) and
cem (because surface c is prohibited before anything except surfacei). Rule 4 (Raising) states that alexical e
must be realized asa surfacei when it precedesthe sequenceC. C @i ; thus, given the underlying formt eni
it will block the potential surface output formst eni andcemi (because the surface sequenceeni is
prohibited). Therefore of the four potential surface forms, three are filtered out; rules 3 and 4 leave only the
correct formci mi .

Two-level phonology facilitates arather different way of thinking about phonological rules. We think of
generative rules as processes that change one segment into another. In contrast, two-level rules do not perform
operations on segments, rather they state static constraints on correspondences between underlying and surface
forms. Generative phonology and two-level phonology also differ in how they characterize relationships
between rules. Rules in generative phonology are described in terms of their relative order of application and
their effect on the input of other rules (the so-called feeding and bleeding relations). Thus the generativerule 1
for Raising precedes and feeds rule 2 for Palatalization. In contrast, rulesin the two-level model are
categorized according to whether they apply in lexical versus surface environments. So we say that the
two-level rulesfor Raising and Palatalization are sensitive to a surface rather than underlying environment.

B1.4 With zero you can do (almost) anything

Phonological processes that delete or insert segments pose a specia challenge to two-level phonology. Since
an underlying form and its surface form must correspond segment for segment, how can segments be deleted
from an underlying form or inserted into a surface form? The answer liesin the use of the special null symbol

0 (zero). Thus the correspondence x: 0 represents the deletion of x, whileo: x represents the insertion of x. (It
should be understood that these zeros are provided by rule application mechanism and exist only internaly; that
is, zeros are not included in input forms nor are they printed in output forms.) As an example of deletion,
consider these forms from Tagalog (where + represents a morpheme boundary):

UR man+»>bi | i
SR: mamO O i | i

Using process terminology, these forms exemplify phonological coalescence, whereby the sequence nb
becomesm Sincein the two-level model a sequence of two underlying segments cannot correspond to asingle
surface segment, coal escence must be interpreted as simultaneous assimilation and deletion. Thus we need two
rules: an assimilation rule for the correspondence n: mand a deletion rule for the correspondence b: 0 (note that
the morpheme boundary + istreated as a special symbol that is always deleted).

(5) Nasal Assimlation
nm<=> ___ +0b @
(6) Del eti on

b:0 <=> @m+:0

Notice the interaction between the rules: Nasal Assimilation occursin alexical environment, namely alexical b
(which can correspond to either asurface b or 0), while Deletion occurs in a surface environment, namely a
surfacem (which could be the realization of either alexical n or m). In thisway the two rules interact with each
other to produce the correct output.

Insertion correspondences, where the lexical segment is0, enable one to write rules for processes such as
stress insertion, gemination, infixation, and reduplication. For example, Tagalog has a verbalizing infix umthat
attaches between the first consonant and vowel of a stem; thustheinfixed form of bi I'i iSbuni | i . To account

for this formation with two-level rules, we represent the underlying form of the infix umas the prefix x+,
where X isaspecia symbol that has no phonologica purpose other than standing for the infix. We then write a
rule that inserts the sequence umin the presence of X+, which isdeleted. Hereis the two-level correspondence:

UR: X+bOOill i
SR OO0Obumi I i

and here isthe two-level rule, which simultaneously deletes X and insertsuni

(7) I nfixation
X0<=>__ +0CCOuOmMmVWVYvV

These examples involving deletion and insertion show that the invention of zero isjust asimportant for
phonology asit was for arithmetic. Without zero, two-level phonology would be limited to the most trivial
phonological processes; with zero, the two-level model has the expressive power to handle complex
phonologica or morphological phenomena (though not necessarily with the degree of fdicity that alinguist
might desire).

B2 Rule interaction in two-level phonology

B2.1 Ordered rules versus two-level rules

Generative phonology and two-level phonology use quite different rule formalisms. They differ from each
other in two aspects. how the rules are applied and what is available in the rules environments. In brief,
generative rules are applied in an ordered sequence and their environments have access only to underlying
structure, whereas two-level rules are applied smultaneoudy and their environments have access to both
underlying and surface structure. Generative phonology claims that rule ordering is necessary to handle
Interactions among rules, while two-level phonology claimsthat if rules have access to both underlying and
surface environments, rule ordering is unneccessary.

The debate over rule ordering has been around since the 1960s. An array of possible rule application models
were proposed, ranging from extrinsically ordered rules as one extreme to simultaneous rules as the other
extreme, with various intermediate positions such as rules that apply sequentially but are not extrinsically
ordered. Of these various models, simultaneous rule application was virtually rejected out of hand because it
appeared unable to handle certain types of rule interaction. But it isimportant to note that apparently nothing
precisaly like the two-level model was ever considered.

A typical textbook example of the argument against simultaneous rule application is found in Kenstowicz and
Kisseberth (1979:291ff). They describe amodel of simultaneous rule application which they call the direct
mapping hypothesis. The description "direct mapping" comes from the fact that if al rules are applied
simultaneously, then an underlying form is mapped directly onto its corresponding surface form (that is, there
are only two levels of representation). Thisisin contrast to a sequential model of rule application which maps
an underlying form to its surface form indirectly via severa intermediate levels of derivation. First, they show
an example of rule interaction that simultaneous rules can handle. Rules 8 and 9 are the same rules asfirst used
in section B1.2 above, but they are placed in adifferent order.

(8) Pal atal i zati on
t -->c /[i

(9) Vowel Rai sing
e-->i [/ ___COI

A sample derivation of forms to which these rules apply looks like this:

UR: tem
(8) --
(9) tim
SR tim

Aswas observed in section B1.2 above where these rules were first used, the Raising rule potentially feeds

the Palatalization rule, since if Raising were applied first it would increase the number of formsthat could
undergo Palatalization by creating more instances of i . However, by ordered Palatalization to apply first, itis
prevented from applying before asurfacei that is produced by Raising. In other words, the order of these
rules captures the fact that Palatalization only applies before an underlyingi . These rules demonstrate a
counterfeeding order; that is, the feeding rule is ordered after the "fed" rule.

However, if the two generative rules 8 and 9 are alowed to apply simultaneoudly to the underlying form
teni, thecorrect surfaceformtinmi will be produced. Thisis because the structural description of
Palatalization is not met in the underlying formt eni, thusit does not apply. But the structural description of
Raising ismet, so it applies and produces the correct surfaceformti mi . Thusrulesin a counterfeeding order
do not pose a problem for simultaneous rules.

Then, Kenstowicz and Kisseberth show an example of rule interaction that simultaneous rules cannot handle.
Rules 10 and 11 are the same as rules 8 and 9, but in the reverse order.

(10) Vowel Rai sing
e-->i [/ __COIi

(112) Pal at al i zati on
t -->c¢c/ i

A sample derivation of formsto which these rules apply looks like this:

UR: tem
(10) tim
(11) cim
SR: cim

Rules 10 and 11 are now in afeeding order, since Palatalization (rule 11) applies to the output of Raising (rule
10) to produce the surface from ci mi . The order of these rules captures the fact that Palatalization applies
before asurfacei regardless of whether itsunderlying sourceisi or e (by meansof the Raising rule). We
have already seen above that applying these rules simultaneously produces the surface formti mi .
Simultaneous rules cannot produce the desired surface form ci mi , since Palatalization does not apply to the
underlying form.

From this demonstration Kenstowicz and Kisseberth conclude that the direct mapping hypothesis (that is,
simultaneous rules) can handle rules in a counterfeeding order but not rules in afeeding order; thereforeit isan
inadequate modédl of rule application. However, their conclusion depends on the assumption that phonological
rules can refer only to the underlying environment, never the surface environment. If thisrestrictionis
removed, then the situation becomes quite different. For example, if rule 11 above could "look ahead" to the
surface environment, then it could apply before asurfacei, thusenabling rules 10 and 11 to apply
simultaneously and produce the desired surface form. While there was some discussion in the phonological
literature about so-called "global rules’[fn3] that could ook ahead to the surface environment, the concept was
never accepted into mainstream phonological theory. Two-level phonology takes this germ of anideaand
developsit into afully developed formalism for expressing rule environments that obviates the need for
ordered rules.

Here are rules 8 and 9, the counterfeeding rules, expressed as two-level rules:

(14) Pal atal i zati on
t:rc<=>___i:@

(15) Vowel Rai sing
eli <= CC @i

Since even simultaneous generative rules can handle rulesin a counterfeeding order, trandating rules8 and 9
into two-level rulesis straightforward. We have shown above that a"counterfed” rule such asrule 8, the
Palatalization rule, is stated in terms of the underlying environment. Thisis reflected in the environment of rule
14, the two-level rule for Palatalization, where the correspondencei : @ refersto al feasible pairs whose
underlying segment isi ; in other words, Palatalization applies before an underlyingi regardless of its
surface realization. (Note that rule 15, the two-level rule for Vowel Raising, is discussed in section B1.3 above

asrule4.)
Here are rules 10 and 11, the feeding rules, expressed as two-leve rules:

(16) Vowel Rai sing

eli <= _ CC @i
(17) Pal atal i zati on
t:c <= @i

Now Palatalization represents the "fed" rule and therefore applies in a derived rather than underlying
environment. Thisisreflected in the environment of rule 17, the two-level rule for Palatalization, where the
correspondence @i refersto al feasible pairs whose surface segment isi ; in other words, Palatalization
applies beforeasurfacei regardless of its underlying source (eitheri ore).

When we ook at generative rules that exemplify ableeding relation , we get analogous results: ssmultaneous
generative rules can handle rules in a counterbleeding relation but not a bleeding relation, but both types of rule
relations can be expressed by two-level rules. To demonstrate this, consider rules 18 and 19:

(18) Vowel | owering
i -->e/ __ _COe

(19) Pal atal i zati on
t -->c¢c/ i

Here is a sample derivation using these rules:

UR: tine
(18) tene
(19)

SR: tene

The underlying formti mi in the second column meets the structural descriptions of both Vowel Lowering
and Palatalization. Applying Vowel Lowering first produces the intermediate formt eme which no longer
meets the structural description of Palatalization. Thus Vowel Lowering bleeds Palatalization. The order of
these rules captures the fact that Palatalization applies before asurfacei . Now here arerules 18 and 19
expressed as two-level rules:

(20) Vowel | owering
ite<=>_CC @e

(21) Pal at al i zati on
t:c <=> @i

Thefact that Palatalization only applies before asurfacei isreflected in the environment of rule 17, where the
correspondence @i refersto all feasible pairs whose surface segment isi .

Rules 22 and 23 are the same as rules 18 and 19, but in the reverse order.

(22) Pal atal i zati on
t -->c/ i
(23) Vowel | owering

i -->e/ __ _COe

Here is a sample derivation using these rules:

UR: time
(22) cime
(23) ceme

SR: cene

For the underlying formt i me, Vowel Lowering now counterbleeds Palatalization, sinceit potentially bleeds
Palatalization (as demonstrated above) but is ordered after it. The order of these rules captures the fact that
Palatalization applies before an underlyingi regardless of its surface realization. Now here are rules 22 and 23
expressed as two-level rules:

(24) Pal atal i zati on
t:c<=>__i:@
(25) Vowel | owering

ite<=>__CC @e

Thefact that Palatalization applies before an underlyingi isreflected in the environment of rule 24, where the
correspondencei : @ refersto al feasible pairs whose underlying segment isi .

The preceding discussion shows that the notion of rule interaction is expressed quite differently in two-level
phonology that it isin generative phonology. Because generative phonology is based on aformalism where the
output of one rule serves as the input to another rule, it views rule interaction as one rule increasing (feeding)
or decreasing (bleeding) the potential input to another rule. In contrast, two-level phonology viewsrule
interaction in terms of environmental constraints on rules--whether they apply to underlying or surface
environments.

Asapractical guide for trandating ordered generative rules into two-leve rules, here are two rules of thumb:

e If two generativerules A and B are ordered such that rule A feeds or bleeds rule B, then construct a
two-level rulefor B that is constrained by the surface environment.

e If two generativerules A and B are ordered such that rule B counterfeeds or counterbleeds rule A, then
construct atwo-level rulefor A that is constrained by the underlying environment.

B2.2 Multiple application

One of the more vexing problems in generative phonology is the problem of multiple application. Multiple
application refersto arule that applies more than once to an input form. This occurs when the structural
description of arule is met at more than one place in aword. For example, consider arule that lengthens
vowels before avoiced consonant: it must apply twice to an underlying form such asabapad to produce the
surface forma: bapa: d. Just as generative phonol ogists debated various models of rule application, they also
debated how to handle multiple application. Chomsky and Halle (1968:344) proposed that a rule should apply
simultaneously to each segment in the form that meets its structura description. Thus the vowel |engthening
rule just mentioned would simultaneoudly apply to each vowel in the input form that met its structura
description. However, this approach suffers from the same defects as described above for simultaneous
generative rules: they cannot handle feeding or bleeding interactions. To see this, consider this generative rule
(repeated from rule 1):

(26) Vowel Rai sing
e-->i [/ ___COI

Assumethat it isintended to relate underlying and surface forms such as these:

UR: penem
SR: pi m m

Only one segment of the underlying form pemeni meets the structural description of rule 26; thus
simultaneous application of rule 26 will produce the incorrect surface form peni ni . The intended surface form
pi mi m showsthat Vowel Raising feedsitself; that is, it can apply to its own output. What we needisa
derivation something like this:

UR penem
(26) pem m
(26) pi m m
SR pi m m

This effect can be accomplished by using the directional iterative mode of application (see Kenstowicz and
Kisseberth 1979:326). This means that the rule passes through the word segment-by-segment to find a
segment that meets the structural description of the rule. If it does, the rule applies to the segment and produces
aderived form. The iterative process then looks at the next segment in the derived form, and so on, until the
end of the word is reached. The iterative mode of application is clearly analogous to rule ordering.

A drawback to the directional iterative mode of application isthat it is necessary to specify whether arule
should apply in aleft-to-right or aright-to-left direction. For example, rule 26 above must apply right-to-left in
order to produce the intended surface form. But what if the surface form ispeni mi instead? To produce this
surface form from the same underlying form, rule 26 must iteratively apply left-to-right. The interaction
produced by left-to-right application can be described as " self-counterfeeding.” The direction of application can
also be used to handle self-bleeding and self-counterbleeding rule interactions.

While the directiona iterative mode of application apparently "works," it requires each rule to carry afeature or
flag indicating its directionality. This may seem a harmless notational accretion, but it actualy indicates a
fundamental weaknessin the rule formalism: the rules are not cleanly separated from the application
mechanism. In other words, rules should express purely phonological information; they should not contain
procedural instructions to the application mechanism.

In contragt, the two-level model can handle so-called multiple application with no additional application
principles or rule features. In fact, multiple application is smply anatural consequence of the two-level
formalism itself. For example, rule 26 above trandates into this two-level rule (see aso rule 4 in section B1.3):

(27) Vowel Rai sing
el <= __ CC @i

Given the underlying form peneni , thisrulewill apply twice to produce the surface form pi mi mi . The
correspondence @i in the environment of rule 27 includesthefeasible pairsi : i ande:i, thusenablingthe
ruleto apply before asurfacei regardless of its underlying source. Since rule 26 was described as
self-feeding, it comes as no surprise that itstwo-level version, rule 27, is constrained by a surface environment
(see the principles above for trandating generative rules to two-level rules).

Now assume that the Vowel Raising rule must account for this derivation:

UR peneni
SR pem m

Thisisthe self-counterfeeding case, which the generative model handles by applying rule 26 left-to-right. The
two-level solution isthisrule:

(28) Vowel Rai sing
el <= _ CC i@

Whereas rule 27 used the correspondence @i in its environment, rule 28 usesi : @ In other words, rule 28
saysthat Vowel Raising applies only before an underlyingi (regardless of its surface realization). Since there
iIsonly oneunderlyingi inpemeni, rule 28 only applies once.

At thispoint it isinstructive to compare the generative and two-level versions of the Vowel Raising rules. The
generative analysis posits just one rule, namely rule 26. To account for the self-feeding case, it specifies that
the rule applies right-to-left; while for the self-counterfeeding case, it specifies that the rule applies |eft-to-right.
As noted earlier, this solution requires an extra notational device--adirection flag. The two-level analysis posits
two rules, namely rules 27 and 28. To account for the self-feeding case, rule 27 appliesin a surface
environment; while for the self-counterfeeding case, rule 28 applies in an underlying environment. Thisis
precisely the same way that pairs of rulesin feeding and counterfeeding rel ationships are expressed as
two-levd rules; thus the two-level model needs no additional devicesto handle multiple application.

B2.3 Deletion and insertion rules

Section B1.4 above shows how two-level phonology uses the null symbol to represent phonological process
that delete or insert segments. In most cases, trandating generative rules for deletion or insertion into two-level

rulesis straightforward; but some cases require special care, such as when a deletion rule feeds another rule.

Kenstowicz and Kisseberth (1979:57) posit these generative rules for Russian:

(29) | -drop
|l -->0/ C__#
(30) Fi nal Devoi ci ng
[+tobstruent] --> [-voiced] / __ #

These rules produce the following derivations:

UR: greb-u greb gr eb-
(29) -- -- greb
(30) -- grep grep
SR grebu grep grep

Rule 29 deletes aword-final | that follow a consonant and rule 30 devoices aword-final obstruent. The
derivations above show that the deletion rule feeds the devoicing rule; that is, rule 29 deletesthefinal | in
greb-1 which enablesrule 30 to apply to the now-fina b.

To trandate this generative analysisinto atwo-level analysis, wefirst set up the two-level correspondences:

UR: greb-u greb greb-1
SR: grebOu grep gr ep00

Ignoring for the moment the -:0 correspondence for deleting the morpheme boundary symbol, these forms
show that devoicing applieseven when al : 0 pair intervenes. Thus rules 29 and 30 can be trandated into
these two-level rules (where OBS stands for obstruents and OBS[-vc] stands for voiceless obstruents):

(31) | -drop
|:0 <=>C_#
(32) Fi nal Devoi cing
BS: OBS[-ve] <=> __ |:0#
While rule 32 will work for the underlying form gr eb- 1, it will not work for gr eb, which does not have an

| init. Thereforethel : 0 correspondence in rule 32 must be optional. Also, we must permit an optional
morpheme boundary. Rule 32 isrevised as 32"

(32") Fi nal Devoi ci ng

OBS: OBY[-ve] <=> (-:0)(l1:0)#

B2.4 Mutually bleeding rules

In al the examplesthusfar in this chapter of interaction among generative rules, the rule that feeds or bleeds
another rule does so by affecting the second rule's environment. For example, rule 29 above feeds rule 30 by
deleting a segment of its environment. However, arule can also feed or bleed another rule by increasing or
decreasing instances of itsinput, that is, the symbol on the left of the rewriting arrow. For example, consider
these two schematic generative rules:

(33) a-->b/ x_y
(34) a-->c¢/ x___

Here isaderivation using these rules:

UR: xay
(33) xby
(34) -

SR xby

Since rules 33 has the same input symbol as rule 34 (namely a) , rule 33 bleeds rule 34. Notice however that if
rule 34 were applied first, then it would bleed rule 33 and produce the surface form xcy. This has been called
mutual bleeding.[fn4] Examples of mutually bleeding rules have been used as arguments for the necessity of
ordered rules, sinceit isonly by ordering the rules that the intended surface form is ensured. Thus such
examples are a challenge to the two-level model.

To see how to trandate these ordered rules into two-level rules, we first rewrite them using two-level notation:
(35) a:b <=> x__y
(36) a:c <=> x___

Unfortunately, these two-level rules will not work. This is because the <= parts of the rules have arealization
conflict (or <= conflict; see Antworth 1990:85ff for more on rule conflicts).[fn5] A realization conflict arises
due to the meaning of <= rules. A <= rule requires the correspondence always to occur in the specified
environment. The <= part of rule 35, then, says that when the lexical segment a occursin the environment
x___y itmust beredlized asthe surface segment b. Similarly, the <= part of rule 36 says that when the lexical
segmenta occursin the environment x___ it must be realized as the surface segment c. The conflict arises
when the rules are given an underlying form such asxay, which meetsthe structural description of both
rules. Rule 35 saysthat it must be realized asxby, whilerule 36 saysthat it must berealized asxcy. It
should be remembered that in the two-level modedl, all rules apply simultaneoudly and all must apply
successfully (even if only vacuoudly). If any individual rule fails, the derivation of the input form fails and no
result isreturned. Sinceit isimpossible for both rules 35 and 36 to apply successfully to the underlying form
xay, neither can succeed.

The conflict can be resolved by modifying rule 36 in such away that it allows (but does not require) the
correspondence a: b (from rule 35) in itsenvironment. Thusin the environment x___y rule 35 will sanction
thepair a: b and rule 36 will sanction the pairsa: b and a: c. When therules are applied together, only the
intersection of these sets of pairs can succeed, namely a: b. Thisisaccomplished by splitting rule 36 into a<=
rule and a=> rule and writing the correspondence part of the<=ruleasa: [b| c], which meansthat the
underlying segment a isrealized either asasurfaceb or asasurfacec. Now see rule 36a and 36b:

(36a) a:[blc] <= x_

(36b) a:c => x____

Comparing the two-leve rules 35 and 36a-b with the generative rules 33 and 34, it could be argued that the
two-level rulesareinferior to the generative rules, since rule 36a requires digunctive segments, namely

[bl c], whilerule 34 does not. Thus the generative rules, which requires fewer symbols, could be judged
simpler or more economical than the two-level rules. Interestingly, Karttunen (1993) argues that a digunction
of symbolssuchasb | ¢ isactualy smpler (more generd, less specific) than just the single symbol ¢
(whichinturnis simpler than a conjunction of symbols such asb ” ¢). To see how this claim can be
substantiated, we will ook at a pair of rules that exemplify common phonological processes (where z stands
for avoiced alveopalatd fricative):

(37) Pal atal i zati on
s -->Z 1/ i___i

(38) Voi ci ng
s -->z /[V_V

Here are sample derivations using the rules:

UR: asa i Si
(37) -- i Zi
(38) asa

SR: asa i Zi

Like rules 33 and 34 above, rules 37 and 38 share the same input symbol and thus potentially bleed each other.
The important thing to notice hereisthat the structural description of rule 37 is subsumed by (properly
included in) the structural description of rule 38. That is, any input form that meets the structural description of

rule 37 will al'so meet the structural description of rule 38, but not the other way around. Another way of
describing this situation isto say that rule 38 isagenera rule that includes rule 37, amore specific rule, in its
scope. Rule 38 isagenera of intervocalic voicing that changes unvoiced s tovoiced z. Rule 37 also voicess
in an intervocalic environment, but also palatalizesit to become z just in the specific intervocalic environment
i __i. Itisnosurprisethat the Palatalization ruleis ordered before the Voicing rule, since we expect that a
specific condition will take precedence over ageneral condition.[fn6]

Rules 37 and 38 trand ate into these two-leve rules:

(39) Pal atal i zati on
S:Z <=>1i__ i

(40) Voi ci ng
Sz <=>V__V

Like rules 35 and 36 above, rules 39 and 40 have aredlization conflict. Thisis because, given the input form
i si which meets the structural description of both rules, rule 39 requiress to berealized asz, whilerule4b
requiress to berealized asz. The conflict isresolved by modifying rule 40 so that it allows (but does not
require) s: Z to succeed in its environment:

(40a) Voi ci ng
s:[z]|Z] <=V_V

(40b) s:z =>V__V

In rule 40a, the digunctive segments[z| z] form anatural class of segments which differ only with respect to
point of articulation. In terms of distinctive features, it takes fewer featuresto specify [z| z] thanit takesto
specify justz. Thuswhen two (or more) segments are closely related phonetically, it turns out to be true that a
digunction of them is simpler (more economical) than specifying a single segment. (Note that for

PC-KIMMO, which uses subsets rather than distinctive features, the segments would be put in a subset

named, say, Z.)

B2.5 Input feeding rules

The previous section dealt with atype of generative rule interaction where a rule bleeds the input symbol of
another rule. This section deals with an interaction where arule feeds the input symbol of another rule. Thisis
perhaps the most difficult type of generative rule interaction to express with two-level rules and has been cited
as an argument for the necessity of ordered rules. While the following discussion shows how to handle "input
feeding” with two-level rules, it may well be the case that input feeding is an overly powerful device whose
use in natural language is not warranted.

Consider these two schematic rules which exemplify the input feeding relation:
(41) a-->b/ x___
(42) b-->c/ __y

The output symbol of rule 41 isidentical to the input symbol of rule 42; thus rule 41 feeds the input symbol of
rule 42. Applying these rules produces derivations like these:

UR: Xa by xay
(41) xb -- xby
(42) -- cy Xcy
SR xb cy Xcy

Relativeto theinput formsxa and by the two rules do not interact. But for the input form xay rule 41 feeds
rule 42 by creating the intermediate form xby. The two-level model, of course, does not permit such
intermediate forms. Thus it would seem that atwo-level analysis of these forms would have to posit athird
rule that realizesunderlyinga asasurfacec justintheenvironmentx__ .

If this were the only solution available to the two-level model, then it would be a strong point in favor of

ordered rules, since the ordered rule solution needs only two rules while the two-level solution would require a
third rule that repeats much of the information aready contained in the first two rules. Fortunately, thereis
another approach available to the two-level model. To get a clue of the possible solution, we will convert the
above generative derivations into two-level correspondences:

UR: Xa by xay
SR xb cy Xcy

From these correspondences we can make two observations: first, underlying a hastwo surface realizations, b
andc; and second, surfacec hastwo underlying sources, b and a. This suggests a solution using
digunctive input and output symbols. The generative rules above can be rewritten as the following two-level
rules:

(43) a:[blc] <=> x___
(44) [al|b]:c <=> __y

Rule 43 will sanction the pairsa: b and a: ¢ after x, whilerule 44 will sanction the pairsa: ¢ and b: ¢ beforey.
Intheenvironment x___y, then, both ruleswill apply at once, permitting only the intersection of these sets of
pairs, namely a: c. Note that these rules can be written more felicitoudly if we declare a subset P consisting of
b andc and asubset Q consisting of a andb and then write the correspondencein rule 43 asa: P and the
correspondenceinrule44 asQ c. Thisimpliesthatb andc ontheonehandanda andb on the other hand
are phonetically related.

The motivation for using rules like 41 and 42 above isto provide an intermediate environment for athird rule.
For example, rules 41 and 42 are repeated here as rules 45 and 47 with athird rule inserted between them:

(45) a-->b/ x___
(46) Xx-->z/ b

(47) b-->c¢c/ __y

These rules produce the following derivations:

UR xa by xay
(45) xb -- xby
(46) zb -- zby
(47) -- cy zcy
SR: zb cy zcy

In the derivation of the underlying form xay, the segment b only occursin intermediate forms where it serves
as the environment for rule 46. Thus, the argument runs, such an analysis demonstrates that ordered rules and
intermediate forms are necessary constructs of a phonological formalism. The two-level rebuttal to this
argument should sound familiar by now: rule 46 need only to be generalized to permit its application before
either asurfaceb (asinthederivation for xa) or asurfacec (asinthe derivation for xay) . Thusrule 46
trandates into two-level rule 49, which together with two-level rules 43 and 44 account for the same
derivations as the generative analysis.

(49) X:z <=> __ a:[b|c]

Here is how the two-level analysisworks. The set of all feasible pairs sanctioned by the rules comprises the
specia correspondencesa: b, a:c, b:c, x:z plusdefault correspondencessuchasa: a, b: b, and x: x.
When applied individually to the underlying form xay, the three two-level rules (that is, 43, 44, and 49)
sanction these surface forms:

Rul e 43: xby, xcy, zby, zcy
Rul e 44: Xcy, zcy
Rul e 49: zby, zcy

When the three rules are applied s multaneoudy, only the intersection of their outputs succeeds, namely zcy.

As an example of anatural language analysis that proposes a set of rules similar to rules 45 to 47, we will
examine some data and rules from Lomongo as reported by Kisseberth (1976:48-49).[fn7] First, the
generative rules as Kisseberth writes them:

(50) dide Fornation
[-low, +syll] -->[-syll] / __V

(51) Affrication
t c
--> [___[-cons, -syll]

{d, 1} j

(52) y-Drop
y -->0/ {c,j}___

The rules produce the following derivations:

UR: ..loa... N -
(50) | wa lya
(51) j wa jya
(52) -- ja
SR j wa ja

Rules 50 and 52 exemplify the "input bleeding” relation: rule 50 changesi toy, andrule 52 then deletesy.
They, which appears only in intermediate forms, serves as the environment for rule 51.

To trand ate these generative rulesinto two-level rules, we first declare the following subsets:

SUBSET G i oy w

SUBSET g +syl] i o

SUBSET g -syll] y wo ;where 0 is the NULL synbol
SUBSET d - bk] iy

SUBSET D t dl

SUBSET J Cj

The full set of high vocoids (subset G) is divided into three subsets: syllabic (i and o), nonsyllabic (y and
w), andnonback (i and y). Subset D contains the apical consonants while subset J contains their affricate
counterparts.

The set of al feasible pairsincludes default correspondencessuch asa: a, t:t, and |:1 plusthese specia
correspondences.

UR: i 0 i y t d I

SR y w 0 0 c i i

Rule 50, Glide Formation, istrandated into two-level rule 53, where the correspondence d +syl 1]: d - syl |]
stands for the set of feasible pairs{i:y, i:0, o:w}:

(53) G ide Formation
g+syll]:g-syll] <= __ V

Rule 51, Affrication, istrandated into two-level rule 54, where the correspondence D: J stands for the set of
feasblepairs{t:c, d:j, 1:j}:

(54) Affrication
DiJ <=>___@(3-syll]

The environment of rule 54 contains the correspondence @ d - syl |], which capture the fact that Affrication
can apply before surface nonsyllabic glides produced by rule 53.

Rule 52, y-Drop, istrandated into two-level rule 55, now called Front Glide Drop, where the correspondence
G[-bk]:0 stands for the set of feasible pairs{i: 0, y:0}:

(55) Front G ide Deletion
G-bk]:0 <=> @J___

The environment of rule 55 contains the correspondence @ G - bk], which capture the fact that Front Glide
Deletion can apply after surface affricates produced by rule 54.

When applied individually to the underlying form1 i a, thethreetwo-level rules (that is, 53, 54, and 55)
sanction these surface forms:

Rul e 53: lya, la, jya, ja
Rul e 54: jya, ja
Rul e 55: lia, lya, ja

When the three rules are applied simultaneoudly, only the intersection of their outputs succeeds, namely j a.

There are two crucial ways in which the two-level rules differ from the generative rules. First, the subset
G[-syll] includes not only y and w but alsoo, the NULL symbol. This permits rule 53 (Glide Formation) to
sanction two surface redlizations for underlyingi, namelyy ando. A likely objection to thisanalysisisthat
by definition anull segment (zero) has no phonetic content and does not belong in a class of segments
described as nonsyllabic glides. The alternativeisto remove 0 from subset G[-syll] and instead include it asa
digunctive surface segment in the correspondence part of the Glide Formation rule:

(53") G ide Formation
G+syll]:[g-syll] | 0l<=> __V

Thus Glide Formation says that a high vowel either isrealized as anonsyllabic glide or is deleted. However,
the Affrication rule must also be revised to include 0 in its environment:

(54") Affrication
DJ <=>__@[{d-syll] | O]

Notice that these changes make rules 53' and 54' look very similar to the schemantic rules 43 and 49 above.
The choice between rules 53 and 54 or rules 53' and 54' is largely a matter of taste on the part of the analyst,
depending on his or her commitments to phonological theory.

The second significant difference is that they- Drop rule of the generative analysis has become the Front Glide
Deletion rule in the two-level analysis. What this means is that whereas the generativey- Drop rule deletes only
an underlyingy, thetwo-level Front Glide Deletion rule deletes both underlyingy andi . Whileat first it
might appear that the two-level ruleis more complex than the generative rule, the two-leve ruleis actually
simpler: becausey andi are phonetically closely related (differing only in syllabicity), it takes fewer features to
refer to them asaclassthan it doesto refer to just y.

The two-level solution, then, offers adlightly different perspective on the phonological processes of Lomongo.
In the generative solution, the Glide Formation and y- Drop rules are formulated independent of each other. It
isonly an incidental fact that for some words the output of Glide Formation happens to undergo y- Drop. But
in the two-level solution, y- Drop to generalized to become arule of Front Glide Deletion, which in effect
functions as a special case of the more genera Glide Formation rule. The relation between Glide Formation
and Front Glide Deletion can be stated like this: in the general case, a high vocoid preceding avowel isredized
asanonsyllabic glide; in the specific case, ahigh vocoid following a paatal affricate and preceding avowd is
deleted. Thusthe two-level analysis of Lomongo, rather than sacrificing descriptive insight, actually offersa
felicitous alternative analysis.

[fnl] This section is excerpted from Antworth 1991.

[fn2] This made-up exampleis used for expository purposes. To make better phonologica sense, the forms
should have internal morpheme boundaries, for instancet e+mi (otherwise there would be no basis for positing
an underlying e). See the section below on the use of zero to see how morpheme boundaries are handled.

[fn3] Find areference for this. Lakoff, maybe?

[fn4] Find reference.
[fn5] Thisterm is due to Dalrymple and others 1987.
[fn6] Thisisvery close to Kiparsky's Elsewhere Condition.

[fn7] The primary source of this information on which Kisseberth based his analysisis not available to me.

	B1 Introduction
	B2 Rule interaction

