
Chapter 2: Overview Page: 1 of 1679847270 Monday, November 27, 1995

Chapter 2

Overview of PC-KIMMO Version 2
Last modified November 22, 1995

2.1 What's new in version 2

2.2 A sample session using the word grammar component

Using the Synthesizer function

2.3 Changes to the rules component

2.4 Changes to the lexical component

2.5 Changes to the user interface

Figure 2.1 A morphological parse tree

Figure 2.2 Feature structure

Figure 2.3 A word grammar rule

2.1 What's new in version 2
This chapter gives an overview of the new features in PC-KIMMO version 2. These include the following:

The rules component supports multigraphs.

The rules component is compatible with Xerox's twolc rule compiler.

Lexical entries have a new encoding format.

Lexical entries permit a features field.

A word grammar component has been added.

A Synthesizer function has been added.

The internal data structures returned by the Recognizer have been enriched.

Of these new features, the word grammar component is the most significant. The word grammar component
uses a unification-based parser based on the PATR-II formalism described in Shieber 1986. Although parsers
of this type have typically been used for syntactic analysis, they can also be used for morphological analysis
with equal success. Just as a sentence parser produces a tree structure with words as its leaf nodes, a word
parser produces a tree structure with morphemes as its leaf nodes. For example, figure 2.1 shows a parse tree
of the word unbelievable as produced by PC-KIMMO's word grammar component:

Figure 2.1 A morphological parse tree

Chapter 2: Overview Page: 2 of 1679847270 Monday, November 27, 1995

 Word
 |
 Stem
 ______|______
PREFIX Stem
 un+ ___|____
 Stem SUFFIX
 | +able
 ROOT
 be`lieve

Each node of the tree has a feature structure associated with it. The feature structure for the top node is the
most important, since these are the features attributable to the entire word. The feature structure for the top
node of the tree in figure 2.1 is shown in figure 2.2. It gives three features for the word unbelievable. First,
the feature cat has the value Word, which is simply the name the node. Second the feature pos has the value
AJ, meaning that the lexical category (part-of-speech) of the word is Adjective. And third, the feature aform
has the value POS, meaning that it is the Positive form of the adjective (as opposed to the Comparative -er or
Superlative -est forms). If PC-KIMMO were being called from a syntactic parser, then it would return to the
syntactic parser the word unbelievable with its features.

Figure 2.2 Feature structure

[cat: Word
 head: [pos: AJ]
 aform: POS]]

The word grammar component uses a file containing a grammar written by the user. A grammar consists of
context-free rules and feature constraints. An example of a rule with constraints is shown in figure 2.3.

Figure 2.3 A word grammar rule

Word = Stem INFL
 <Stem head pos> = <INFL from_pos>
 <Word head> = <INFL head>

One obvious difference between parsing a sentence and parsing a word is that a sentence is typically already
tokenized into words while a word is not tokenized into morphemes. In other words, we put white space
between words but not between morphemes. In PC-KIMMO, the Recognizer uses the rules and lexicon to
tokenize a word into a sequence of morphemes which in turn is passed to the word grammar component for
parsing. In its overall architecture, version 2 of PC-KIMMO now resembles the morphological parser
described in Ritchie and others 1992. That parser also first tokenizes a word into morphemes and then parses
the morpheme sequence with a unification-based parser. However, our unification parser differs considerably
from theirs in its implementation.

There are several reasons why we added a word grammar component to PC-KIMMO.

The word grammar component offers a more powerful model of morphotactics.

PC-KIMMO version 1 used only the continuation class model of morphotactics which was used in
Koskennniemi's original model (1983). In the continuation class model, the morphotactic properties of a
morpheme can be stated only in terms of the classes of morphemes that can directly follow it in a word. This
meant that it was very difficult or at least practically unfeasible to enforce certain discontinuous dependencies
between morphemes. The word grammar, however, has the entire power of a context-free grammar at its
disposal and can model word structure as arbitrarily complex branching trees (both left- and right-branching).
The practical result is that with PC-KIMMO version 2 you can eliminate most of the bad parses that were so
difficult to prevent with version 1.

The word grammar component can deduce the lexical category (part-of-speech) of a word.

Chapter 2: Overview Page: 3 of 1679847270 Monday, November 27, 1995

PC-KIMMO version 1 could break a word into its morphemes and gloss each morpheme, but it could not tell
you the category of the whole word. For example, given the word computerization, version 1 would return
this analysis:

 com`pute+er+ize+ation com`pute+NR19+VR6+NR23

The original word has been broken into four morphemes with glosses, but there is no indication that the whole
word is a noun. This deficiency made PC-KIMMO less useable as a front-end to a syntactic parser, since a
syntactic parser must know the category of each word. In version 2, the feature-passing mechanism can be
used to determine the lexical category of a word.

The word grammar component can provide a full feature specification for a word.

Besides lexical category, a word grammar can also determine all features of a word that are relevant to syntactic
parsing, such as tense, number, gender, and case.

2.2 A sample session using the word grammar component
For instructions on installing and starting up PC-KIMMO, see section 5. For this sample session, we will use
the English description called Englex, which accompanies the version 2 release. This description include a
rules file, a lexicon file, and a grammar file. To load these files, start up PC-KIMMO and type take englex.
Your screen should look like this:

--
PC-KIMMO TWO-LEVEL PROCESSOR
Version 2.0 (December 15, 1994), Copyright 1994 SIL
Type ? for help
PC-KIMMO>take englex
PC-KIMMO>load rules english
Loading rules from english.rul
PC-KIMMO>load lexicon english
Loading lexicon from english.lex
PC-KIMMO>
--

The rules file and the lexicon file have now been loaded, but not the grammar file. This demonstrates that use
of the word grammar component is optional. If you do not use it, then PC-KIMMO will behave just as it did in
version 1. Thus you can use version 2 with your existing descriptions without having to write grammar files
(however, you must convert your existing lexicon files to the new format required by version 2). To try the
Recognizer without the word grammar, just type some recognize commands:

--
PC-KIMMO>recognize foxes
`fox+s `fox+PL
`fox+s `fox+3SG

PC-KIMMO>
--

Two results were returned for the word foxes. The two results are due to two analyses of the suffix +s, one
the plural suffix for nouns, the other the third, singular suffix for verbs. Obviously our knowledge of English
tells us that the first result is correct and the second is incorrect. The point to note here is that the lexicon
constructed for this example does not have sufficient morphotatic constraints to disallow the incorrect analysis.
There is a new display option that displays the results of the Recognizer in an interlinear format. Type set
alignment on and then rec foxes again:

--
PC-KIMMO>set alignment on
PC-KIMMO>rec foxes
`fox +s

Chapter 2: Overview Page: 4 of 1679847270 Monday, November 27, 1995

`fox +PL
N INFL

`fox +s
`fox +3SG
N INFL
--

This display vertically aligns each morpheme of the lexical form with its gloss on the second line and its
sublexicon name on the third line. Thus we can visually see that each Recognizer result is a sequence of
morpheme structures. Not shown in this display, though present internally, are the features associated with
each morpheme. Now load the English word grammar and try recognizing the same word again. Type load
grammar english and then rec foxes (features with empty values are not displayed):

--
PC-KIMMO>load grammar english
Loading grammar from english.grm

PC-KIMMO>rec foxes
`fox +s
`fox +PL
N INFL

1:
 Word
 ___|____
 Stem INFL
 | +s
 ROOT +PL
`fox
`fox

Word:
[cat: Word
 clitic:-
 head: [number:PL
 pos: N]
 root_pos:N
 root: `fox]
--

One important difference is that now only one result is returned, namely the one that correctly interprets the -s
suffix as a plural marker. What has happened is this.

First, the input form foxes was analyzed using the rules and lexicon only. This produced the same
two results as first shown above. However, these results are retained internally and not displayed on
the screen.

Then, each result was passed to the word grammar component. The word grammar accepted the first
result, in which +s is a plural suffix, but rejected the second, in which +s is a verbal suffix. The
rejected result was discarded and only the result that satisfied the grammar was retained and displayed
on the screen.

Thus the lexicon and grammar work together to produce the desired results. The lexicon serves to break a
word into its morphemes using minimal morphotactic constraints, while the grammar applies a more powerful
morphotactic mechanism that filters out any incorrect analyses allowed by the lexicon. The Recognizer result
display consists of three parts: the tokenized lexical form, the parse tree, and the feature structures. The first
part is always displayed, while the other two parts are displayed only if a word grammar is in use and certain
options are turned on. In the display shown above, the first part of the result display is the same as it was
before the word grammar was loaded (assuming that the alignment option is still on). The second part of the
result display is the analysis tree. The nodes of the tree bear the category symbols used in the word grammar
rules. The leaf nodes (ROOT and INFL) also display the lexical form and gloss of each morpheme. The tree

Chapter 2: Overview Page: 5 of 1679847270 Monday, November 27, 1995

option determines how the tree is displayed. In the display above, the tree option is set to full by default. If the
tree option is set to flat, then it would be displayed as a bracketed string like this:

 (Word (Stem (ROOT `fox '`fox'))(INFL +s '+PL'))

Setting the tree option to off will suppress display of the tree entirely. The third part of the result display
consists of feature structures. The features option determines how feature structures are displayed. In the
display shown above, only the feature structure for the top node of the tree is shown because the features
option is set to top, If it is set to all, then the feature structure for each node of the tree is shown:

Word_1:
[cat: Word
 clitic:-
 head: [number:PL
 pos: N]
 root_pos:N
 root: `fox]

Stem_2:
[cat: Stem
 ajr8: -
 head: [number:SG
 pos: N
 proper:-]
 root_pos:N
 root: `fox
 reg: +]

ROOT_3:
[cat: ROOT
 ajr8: -
 gloss: `fox
 head: [number:SG
 pos: N
 proper:-]
 root_pos:N
 lex: `fox
 reg: +]

INFL_4:
[cat: INFL
 from_pos:N
 gloss: +PL
 head: [number:PL
 pos: N]
 lex: +s
 reg: +]

Setting the features option to off will suppress display of feature structures entirely. In the example above
using the word foxes, the lexicon returned two results, one of which was disallowed by the word grammar. In
the next example, the lexicon returns one result which is expanded into three by the grammar. First, turn off
the grammar component by typing set grammar off. This causes the Recognizer to behave just as if no
grammar were loaded. Then type rec deer. One result is displayed.

--
PC-KIMMO>set grammar off
PC-KIMMO>rec deer
`deer `deer
--

Now type set grammar on and rec deer again.

Chapter 2: Overview Page: 6 of 1679847270 Monday, November 27, 1995

--
PC-KIMMO>set grammar on
PC-KIMMO>rec deer
`deer `deer

1:
Word_4
 |
Stem_5
 |
ROOT_6
`deer
`deer

Word:
[cat: Word
 clitic:-
 head: [number:SG
 pos: N
 proper:-]
 root_pos:N
 root: `deer]

2:
Word_1
 |
Stem_2
 |
ROOT_3
`deer
`deer

Word:
[cat: Word
 clitic:-
 head: [number:PL
 pos: N
 proper:-]
 root_pos:N
 root: `deer]
--

In this display, the single result from the lexicon has been given two analyses by the word grammar. While the
two trees are identical, the feature structures for the top nodes of the trees differ: for the first tree, the feature
number has the value SG, while for the second it has the value PL. In other words, the grammar has produced
both a singular and a plural form for deer. The next example demonstrates that the prefix un+ has two analyses
(or there are two homophonous prefixes spelled un+). First, the negative un+ as in unclear attaches to
adjectives and negates their meaning. Second, the reversive un+ as in untie attaches to verbs and reverses their
action. A word such as unlockable is has two readings due to the ambiguity of the un+ prefix: either "not
lockable" or "can be unlocked." To see how the word grammar distinguishes these reading, type rec
unlockable:

--
PC-KIMMO>rec unlockable
un+`lock+able NEG4+`lock+AJR25a

1:
 Word
 |
 Stem
 _____|_____
PREFIX Stem
 un+ ___|____
 NEG4+ Stem SUFFIX

Chapter 2: Overview Page: 7 of 1679847270 Monday, November 27, 1995

 | +able
 ROOT +AJR25a
 `lock
 `lock

Word:
[cat: Word
 clitic:-
 head: [aform: POS
 pos: AJ]
 root_pos:V
 root: `lock]

un+`lock+able REV1+`lock+AJR25a

1:
 Word
 |
 Stem
 _____|______
 Stem SUFFIX
 ___|____ +able
PREFIX Stem +AJR25a
 un+ |
 REV1+ ROOT
 `lock
 `lock

Word:
[cat: Word
 clitic:-
 head: [aform: POS
 pos: AJ]
 root_pos:V
 root: `lock]
--

The two trees show how the two reading are produced. In the first tree, the negative un+ attaches to the
adjective lockable to give the reading "not lockable." In the second tree, the reversive un+ first attaches to the
verb lock to produce unlock, which in turn is suffixed with +able to give the reading "can be unlocked."
Notice, however, that both trees have the same feature structure for their top nodes; in other words,
unlockable is an adjective in either reading.

Using the Synthesizer function

The Synthesizer function accepts as input a morphological form (a sequence of morpheme glosses separated
by spaces) and returns one or more surface forms. In order to synthesize forms, you must first load a
synthesis lexicon. This can be the same lexicon that you use for recognition, but it must be loaded again as a
synthesis lexicon. You can have both a recognition lexicon and a synthesis lexicon loaded at the same time.
They may or may not be the same lexicon. It is not necessary to load a recognition lexicon to synthesize forms.
A rules file must be loaded before a synthesis lexicon can be loaded. Use of a grammar file is optional.

To try the Synthesizer function, first load the Englex lexicon as a synthesis lexicon (Macintosh users may first
need to increase PC-KIMMO's memory partition):

--
PC-KIMMO>load synthesis-lexicon english
Loading synthesis-lexicon from english.lex
--

Now use the synthesize command with these morphological forms:

Chapter 2: Overview Page: 8 of 1679847270 Monday, November 27, 1995

--
PC-KIMMO>synthesize REV1+ `lock +AJR25a
unlockable

PC-KIMMO>syn NEG4+ `tie +ING
untying

PC-KIMMO>syn `fox +PL +GEN
foxes'
--

To demonstrate that synthesis uses the grammar (if one is loaded), try this ill-formed input form:

--
PC-KIMMO>syn `fox +3SG
*** NONE ***

PC-KIMMO>set grammar off

PC-KIMMO>syn `fox +3SG
foxes

PC-KIMMO>rec foxes
`fox `fox+PL
`fox `fox+3SG
--

When the grammar is used, the form `fox +3SG is rejected, since the grammar prohibits a verbal suffix on a
noun. When the grammar is turned off, then the surface form foxes is returned, since this is permitted by the
lexicon; this is demonstrated by recognizing the form foxes with the grammar off.

2.3 Changes to the rules component

2.3.1 Comment character declaration

In version 1, the comment character could be set either with a command line option (-c) or with the command
set comment. In version 2 the comment character is declared in the rules file with the new COMMENT
keyword. For example, this declaration sets the comment character to %:

COMMENT %

2.3.2 Support for multigraphs

In version 1, the alphabet declared in a rules file was restricted to single characters. In version 2, the alphabet
can also include multigraphs--digraphs, trigraphs, and so on. For example, a description of Spanish would
include the digraph ll in the list of alphabetic characters declared in the rules file. The digraph ll could then be
used in the column header of a state table or in a SUBSET declaration. It is important to understand that a
multigraph can never be interpreted as a sequence of characters. For example, the alphabet for a Spanish
description will include both l and ll; but ll will always be treated as a multigraph, never as a sequence of l plus
l.

2.3.3 Compatibility with Xerox's twolc compiler

Version 2 now can load a rules file (actually state tables) produced by Xerox's twolc rule compiler. For
information on this compiler, visit Xerox Lexical Technology.

2.4 Changes to the lexical component
In version 1, lexical entries looked like this:

Chapter 2: Overview Page: 9 of 1679847270 Monday, November 27, 1995

LEXICON NOUN
`boy Noun "N(boy)"
`baby Noun "N(baby)"
`feet Noun "N(foot).PL"

Lexical entries were grouped into sublexicons declared with the keyword LEXICON; in the example above,
these entries all belong to the NOUN sublexicon. Each lexical entry was composed of three fields, separated
by white space and terminated by a new line. The three fields comprising an entry were the lexical item (or
lexical form), the alternation name, and a gloss string. In version 2 of PC-KIMMO, these lexical entries look
like this:

\lexform `boy
\sublexicon NOUN
\alternation Noun
\gloss N(boy)

\lexform `baby
\sublexicon NOUN
\alternation Noun
\gloss N(boy)

\lexform `feet
\sublexicon NOUN
\alternation Noun
\features pl irreg
\gloss N(foot).PL

Lexical entries are encoded in "field-oriented standard format." Standard format is an information interchange
convention developed by the Summer Institute of Linguistics. It tags the kinds of information in ASCII text
files by means of markers which begin with backslash. Field-oriented standard format (FOSF) is a refinement
of standard format geared toward representing data which has a database-like record and field structure. Using
FOSF to encode lexical entries has several advantages

Version 2 of PC-KIMMO has added an optional features field to lexical entries (see the entry above
for feet). The format for lexical entries used in version 1 would have required adding a fourth column
to each entry which often would be empty. The new format makes adding another field easier.

The user can define the codes used to mark fields by mapping them to fixed internal codes. For
example, this declaration in the main lexicon file says that the field code gloss will mark the gloss field
(where G is the internal code for the gloss field):

 FIELDCODE gloss G

This means that lexical entries can include alternative gloss fields, one of which is chosen for use
when the lexicon is loaded. For example, a lexical entry might look like this:

\lexform `boy
\sublexicon NOUN
\alternation Noun
\eng boy
\sp muchacho

The field code eng and sp mark English and Spanish gloss fields. If the user wants English glosses
then he includes this declaration in the main lexicon file:

 FIELDCODE eng G

and if he wants Spanish glosses, this declaration:

 FIELDCODE sp G

Chapter 2: Overview Page: 10 of 1679847270 Monday, November 27, 1995

The same strategy can be used with any field used in lexical entries.

Fields that haven't been declared in the main lexicon file are considered extraneous and ignored by
PC-KIMMO. This means that lexical entries can contain fields of information intended for purposes
other than use with PC-KIMMO without interfering with PC-KIMMO's operation. For example, a
field linguist could develop a dictionary using FOSF where each entry contains many fields; with a bit
of planning as to choice of field codes, the entries would still be compatible with PC-KIMMO.

FOSF files are compatible with other software developed by the Summer Institute of Linguistics. This
means that one can now use Shoebox (for PCs) or MacLex (for Macintosh) to manage lexicon files. It
would also be easy to use a commercial database program to manage lexical entries and write a routine
to export the entries in the required format for PC-KIMMO.

Lexical entries belonging to a sublexicon do not have to be listed consecutively in a single file (as was
the case for PC-KIMMO version 1); rather, lexical entries in a file can occur in any order, regardless
of what sublexicon they belong to. Lexical entries of a sublexicon can even be placed in two or more
separate files. This makes it possible now to optionally load files of entries that contain lexical entries
belonging to various sublexicons. For example, you could optionally load a file of technical terms
containing nouns, verbs, and adjectives.

2.5 Changes to the user interface
The following new commands are available in PC-KIMMO version 2. For detailed explanations of each
command, see section 5.

clear

Same as NEW command in version 1.

[file] compare synthesize [filespec]

Reads morphological forms (a sequence of morpheme glosses separated by spaces) from filespec, submits
them to the synthesizer, and compares the resulting surface form(s) with the expected results listed in filespec.

file synthesize input-filespec [output-filespec]

Reads a list of morphological forms (a sequence of morpheme glosses separated by spaces) from
input-filespec, submits them to the synthesizer, and returns each morphological form followed by the
resulting surface form(s).

load grammar [filespec]

Loads a word grammar from filespec.

load synthesis-lexicon [filespec]

Loads a synthesis-lexicon from filespec.

save [filespec]

Writes the current setting to a take file named filespec. If filespec is not specified, the settings are written to a
file named PCKIMMO.TAK in the current directory. On start-up, PC-KIMMO automatically tries to load
default settings from PCKIMMO.TAK (or PC-KIMMO.TAK).

set alignment {on | off}

Turns alignment display mode on or off.

set ambiguities number

Chapter 2: Overview Page: 11 of 1679847270 Monday, November 27, 1995

Limits the number of analyses produced by the word grammar to number.

set failures {on | off}

Turns grammar failure mode on or off.

set features {top | all | off}

Sets the feature display mode.

set features {full | flat}

Sets the feature display style.

set gloss {on | off}

Turns gloss display mode on or off.

set grammar {on | off}

Turns the loaded word grammar on or off.

set trim-empty-features {on | off}

Turns trimming of empty features on or off.

set tree {full | flat | indented | off}

Sets the tree display style.

set unification {on | off}

Turns feature unification in the word grammar on or off.

set warnings {on | off}

Turns warning mode on or off.

synthesize [morphological-form]

Produces surface forms from a morphological form (a sequence of morpheme glosses).

