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A1 Understanding two-level rules

A2 Implementing two-level rules as finite state machines

A3 Compiling two-level rules into state tables

A4 Writing the rules file

This chapter describes in detail the rules component of PC-KIMMO. Section A1 describes the formalism and
meaning of two-level rules. Section A2 explains the relationship between two-level phonological rules and
finite state transducers. Section A3 describes how to translate (or compile) two-level rules into the finite state
transition tables that are used by PC-KIMMO. Section A4 provides specific information on the format of the
rules file. 

*  This appendix is a revised version of chapter 3 of Antworth 1990 (the original PC-KIMMO book). 
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Section A1 describes the form and meaning of two-level rules: how they differ from the rules of generative
phonology, their notation, the four types of two-level rules, and the concept of two-level environments. 



A1.1 Generative rules and two-level rules
Two-level rules are similar to the rules of standard generative phonology, but differ in several crucial ways.
Rule R1 is an example of a generative rule. 

R1        t ---> c / ___ i

Rule R2 is the analogous two-level rule. 

R2        t:c => ___ i

The difference between the two rule formalisms is not just notational; rather their meanings are different. 

Generative rules have three main characteristics. First, they are transformational rules---they transform or
rewrite one symbol into another symbol. Rule R1 states that t becomes (is changed into) c when it precedes i.
After rule R1 rewrites t as c, t no longer "exists." Second, sequentially applied generative rules convert
underlying forms to surface forms via any number of intermediate levels of representation; that is, the
application of each rule results in the creation of a new intermediate level of representation. Third, generative
rules are unidirectional---they can only convert underlying form to surface form, not vice versa. 

In contrast, two-level rules are declarative; they state that certain correspondences hold between a lexical (that
is, underlying) form and its surface form. Rule R2 states that lexical t corresponds to surface c before i; it is
not changed into c, and it still exists after the rule is applied. Because two-level rules express a correspondence
rather than rewrite symbols, they apply in parallel rather than sequentially. Thus no intermediate levels of
representation are created as artifacts of a rewriting process. Only the lexical and surface levels are allowed. It
is this aspect of their nature that is emphasized by the name "two-level" rules. Furthermore, because the
two-level model is defined as a set of correspondences between lexical and surface representation, two-level
rules are bidirectional. Given a lexical form, PC-KIMMO will return the surface form. Given a surface form,
PC-KIMMO will return the lexical form. 

A1.2 Correspondences and feasible pairs
Two-level rules treat each word as a correspondence between its lexical representation (LR) and its surface
representation (SR). For example, consider the lexical form tati and its surface form taci: 

LR:  t a t i
SR:  t a c i

Each pair of lexical and surface characters is a correspondence pair or simply correspondence. We write a
correspondence with the notation lexical-character:surface-character, for instance t:t, a:a, and t:c.
There must be an exact one-to-one correspondence between the characters of the lexical form and the characters
of the surface form. 

There are two types of correspondences exemplified in these forms: default correspondences such as t:t and
a:a, and special correspondences such as t:c. The sum of the default and special correspondences makes up
the set of feasible pairs sanctioned by the description. In other words, all feasible pairs must be explicitly
declared in the description, either as default or as special correspondences. 

A1.3 Two-level rule notation
Looking again at rule R2 (from section A1.1), we see that a two-level rule is made up of three parts: the
correspondence, the rule operator, and the environment or context. The first part of rule R2 is the
correspondence t:c. It specifies a lexical t that corresponds to a surface c. 

The second part of rule R2 is the rule operator =>. Although this operator is shaped like an arrow, its meaning
is quite different from the rewriting arrow of generative rules (for instance, rule R1). The rule operator
specifies the relationship between the correspondence and the environment in which it occurs. There are four
operators: =>, <=, <=>, and /<=. The semantics of the rule operators are discussed in section A1.5 in detail,
but briefly they mean the following: 



=>  
the correspondence only occurs in the environment 

<=  
the correspondence always occurs in the environment 

<=>  
the correspondence always and only occurs in the environment 

/<=  
the correspondence never occurs in the environment 

The third part of rule R2 is the environment or context, written as ___i. It specifies the phonological
environment in which the correspondence is found. As in standard phonological notation, an underline, called
an environment line, indicates the position of the correspondence in the environment. 

The environment of rule R2 contains a notational shorthand. In its full form the rule is written this way: 

R3        t:c => ___ i:i

Rule R3 states that a lexical t corresponds to (or is realized as) a surface c only when it precedes a lexical i
that corresponds to (or is realized as) a surface i. If the lexical and surface characters of a correspondence pair
are identical, the correspondence can be written as a single character. Thus rule R2 is equivalent to rule R3. 

Rule R3 illustrates that environments are also stated in terms of two-level correspondences. We cannot just say
that t corresponds to c before i; we must specify whether it is a lexical or surface i. This means that a
two-level rule has access to both the lexical and surface environments (see section A1.7 below on two-level
environments). In contrast, rules in generative phonology can refer only to the environment of the local level of
representation, which is often an intermediate level. To emphasize the two-level nature of rule R3, we can
write it on multiple lines: 

       t        ___i
           =>
       c        ___i

The environment of a rule can also make use of a special "wildcard" or ANY symbol (written here as @) that
stands for any alphabetic character (as qualified below). For example, 

R4        t:c => ___ i:@

Rule R4 states that t corresponds to c before any feasible pair whose lexical character is i (that is, a lexical i
regardless of how it is realized). In the example above, this could include both the default correspondence i:i
and any special correspondences such as i:y. Note carefully that, when used in a rule, the ANY symbol does
not really mean any alphabetic character, rather it means any alphabetic character that constitutes a feasible pair
with the other character in the correspondence (see section A3.1). As a notational shorthand, a correspondence
such as i:@ is simplified to just the lexical character followed by a colon, that is, i:. The ANY symbol can
also be used on the lexical side of a correspondence: 

R5        t:c => ___ @:i

Rule R5 states that t corresponds to c before any feasible pair whose surface character is i (that is, a surface i
regardless of what lexical character it realizes). This notation is simplified to just a colon followed by the
surface character, that is, :i. It should be noted that the ANY symbol can only be used in the environment part
of a rule, not in the correspondence part. 

Another important characteristic of two-level rules is that they require a one-to-one correspondence between the
characters of the lexical form and the characters of the surface form. That is, there must be an equal number of
characters in both lexical and surface forms, and each lexical character must map to exactly one surface
character, and vice versa. Phonological processes that delete or insert characters are expressed in the two-level



model as correspondences with the NULL symbol, written here as 0 (zero). In the following forms, a lexical +
(morpheme boundary) corresponds to a surface 0 (that is, it is deleted) and a surface '(stress mark)
corresponds to a lexical 0 (that is, it is inserted). 

LR:  0 t a t + i
SR:  ' t a c 0 i

The NULL symbol is used only internally by the rules; it is not printed in output forms and does not need to be
written in input forms. PC-KIMMO will accept the lexical input form tat+i and return the surface output form
'tati. The NULL symbol can be used both in the environment and the correspondence parts of a rule. 

Another special symbol is the BOUNDARY symbol, written here as #. It indicates a word boundary, either
initial or final. It can be used only in the environment of a rule and can only correspond to another
BOUNDARY symbol, that is, #:#. 

A1.4 Using character subsets in rules
In generative phonology, classes of characters are referred to using distinctive features; for example, vowels
are referred to using the cluster of features [+syllabic, +sonorant, -consonantal]. PC-KIMMO does not support
distinctive features. Instead, classes of characters are enumerated in lists that are given single-word names (one
or more characters, no spaces). 

These character classes are defined in SUBSET statements in the rules file (see section A4.3). For example,
the following declarations define C as the set of consonants, V as the set of vowels, S as the set of stops, and
NAS as the set of nasals: 

   SUBSET C     p t k b d g m n ng s l r w y
   SUBSET V     i e a o u
   SUBSET S     p t k b d g
   SUBSET NAS   m n ng

Suppose that after writing rule R2 above (section A1.1), further data show that all the alveolar obstruents are
palatalized before high, front vowels. For example, 

LR:  ati  ade  asi  aze
SR:  aci  aje  aSi  aZe

Rather than write a separate rule for each correspondence, we will define subset D for alveolar obstruents,
subset P for their palatalized counterparts, and subset Vhf for the high, front vowels: 

  SUBSET D     t d s z
  SUBSET P     c j S Z
  SUBSET Vhf   i e

Rule R2 can now be generalized by writing it with subsets: 

R6        D:P => ___ Vhf

A1.5 The four rule types
The rule operator specifies the logical relation between the correspondence and the environment of a two-level
rule. The rule operators are roughly equivalent to the conditional or implicative operators of formal logic. Rule
R7 (rule R2 above) is written with the rule operator =>. 

R7       t:c => ___ i

The => operator means "only but not always." Rule R7 states that lexical t corresponds to surface c only
preceding i, but not necessarily always in that environment. Thus other realizations of lexical t may be found
in that context, including t:t. In logical terms, the => operator means that the correspondence implies the
context, but the context does not necessarily imply the correspondence. To state it negatively, rule R7 prohibits



the occurrence of the correspondence t:c everywhere except preceding i. 

The => rule is roughly equivalent to an optional rule in generative phonology, and is typically used in cases of
so-called free variation. Rule R7 would be used if the occurrence of t and c freely varies before i. Given the
lexical input form tati and rule R7, the PC-KIMMO generator will produce both surface forms taci and
tati. 

Rule R8 is the same as rule R7 except that it is written with the rule operator <=. 

R8        t:c <= ___ i

The <= operator means "always but not only." Rule R8 states that lexical t always (obligatorily) corresponds
to surface c preceding i, but not necessarily only in that environment. Thus t:c is permitted to occur in other
contexts. In logical terms, the <= operator means that the context implies the correspondence, but the
correspondence does not necessarily imply the context. To state it negatively, if t:¬c (where ¬c means the
logical negation of c) means the correspondence of lexical t to surface not-c (that is, anything except c), then
rule R8 prohibits the occurrence of t:¬c in the specified context. 

The <= rule is roughly equivalent to an obligatory rule in generative phonology. It is used in cases where a
correspondence is obligatory in one environment but also occurs in some other environment as specified by
another rule. Given the lexical input form tati and rule R8, the PC-KIMMO generator will produce both
surface forms taci and caci, unless constrained by some other rule. 

Rule R9 is again the same, except that it is written with the rule operator <=>. 

R9        t:c <=> ___ i

The <=> operator is the combination of the operators <= and => and means "always and only." Rule R9 states
that lexical t corresponds to surface c always and only preceding i. The <=> rule is used when a
correspondence obligatorily occurs in a given environment (compare the <= operator) and in no other
environment (compare the => operator). It is equivalent to the biconditional logical operator and means that the
correspondence is allowed if and only if it is found in the specified context. Given the lexical form tati and
rule R9, the PC-KIMMO generator will return only the surface form taci. Thus rule R9 is equivalent to the
combination of rules R7 and R8. It is up to the analyst to choose between writing separate <= and => rules or
collapsing them into one <=> rule. 

Rule R10 is written with the rule operator /<=. 

R10        t:c /<= ___ i:ê

The /<= operator means "never." It means that the correspondence specified by the rule is prohibited from
occurring in the specified context. A /<= rule is usually used to cover "exceptions" to a more general rule. Rule
R10 states that lexical t cannot correspond to surface c preceding i:ê. Given the lexical form tati, rule R10,
and a rule sanctioning a i:ê correspondence, the PC-KIMMO generator will allow the surface forms tatê and
catê but disallow tacê or cacê. As the operator symbol suggests, the /<= operator is similar to the <=
operator in that it does not prohibit the correspondence from occurring in other environments. 

Figure A1 summarizes the diagnostic properties of rules R7 through R10. For more on the semantics of the
four rule types, see section A3.3. 

Figure A1 Diagnostic properties of the four rule types

--------------------------------------------------------------------------
| Rules 7-10   | Is t:c allowed | Is preceding i the    | Must t always  |
|              | preceding i?   | only environment in   | correspond to  |
|              |                | which t:c is allowed? | c before i?    |
|------------------------------------------------------------------------|
| t:c =>  ___i |      yes       |         yes           |      no        |
| t:c <=  ___i |      yes       |         no            |      yes       |
| t:c <=> ___i |      yes       |         yes           |      yes       |
| t:c /<= ___i |      no        |         ___           |      ___       |



--------------------------------------------------------------------------

A1.6 Expressing complex environments
Several notational conventions exist that can be used to build complex environment expressions. These involve
optional elements, repeated elements, and alternative elements. As an example we will use a vowel reduction
rule, which states that a vowel followed by some number of consonants followed by stress (indicated by ') is
reduced to schwa (ê). For example, 

LR:  bab'a  bamb'a
SR:  bêb'a  bêmb'a

Parentheses indicate an optional element. Rule R11 requires either one or two consonants. 

R11        V:ê <=> ___ C(C)'

Rule R12 requires either zero, one, or two consonants. 

R12        V:ê <=> ___ (C)(C)'

An asterisk indicates zero or more instances of an element. (The asterisk functions the same as a Kleene-star in
regular expressions.) Rule R13 requires either zero, one, or more consonants. 

R13        V:ê <=> ___ C*'

Rule R14 requires one or more consonants. 

R14        V:ê <=> ___ CC*'

A correspondence may occur in more than one environment. Consider a rule of vowel lengthening whereby the
correspondence a:ä (short and long a) occurs in two distinct environments: when it occurs in the syllable
preceding stress (pretonic lengthening) and when it occurs in the stressed syllable (tonic lengthening). For
example, 

LR:  ladab'ar
SR:  ladäb'är

Rule R15 expresses pretonic lengthening and rule R16 expresses tonic lengthening. 

R15        a:ä => ___ C'

R16        a:ä => '___

Note carefully that a description containing these two rules is self-contradictory. Both rules use the =>
operator, which permits the correspondence to occur only in the specified environment. Rule R15 says that
a:ä occurs only in a pretonic syllable; rule R16 says that a:ä occurs only in a tonic syllable. Thus the two
rules conflict with each other. This type of rule conflict is called an environment conflict (or a => conflict for
short, since it involves => rules) and is discussed more fully in section A3.13. The conflict between rules R15
and R16 can be resolved by collapsing the two rules into one. In rule R17 the vertical bar indicates disjunction
between expressions and the square brackets delimit the disjunctive expressions from the rest of the
environment (which in this case is empty). 

R17        a:ä => [ ___ C'| '___ ]

Rule R17 now says, correctly, that the a:ä correspondence is allowed only in either pretonic or tonic position. 

Now consider rules R18 and R19, which are the same as rules R15 and R16 except that they are written with
the <= operator. 

R18        a:ä <= ___ C'



R19        a:ä <= '___

The <= operator means that the correspondence occurs always (obligatorily) in the environment but not only
there. Rules R18 and R19 do not conflict with each other, and so do not have to be collapsed into a single rule.
However, if the analyst so chooses, they can be collapsed into rule R20. 

R20        a:ä <= [ ___ C'| '___ ]

Given the meanings of the rule types as explained in section A1.5, we have the following choices for writing
rules for lengthening. If vowel lengthening occurs only but not always in the specified environments, we must
use rule R17. If vowel lengthening occurs always but not only in the specified environments, we must use rule
R20 (or rules R18 and R19). And if vowel lengthening occurs always and only in the specified environment,
we must use both rules R17 and R20. If the last case is true, the analyst also has the option of collapsing rules
R17 and R20 into one <=> rule, rule R21. 

R21        a:ä <=> [ ___ C'| '___ ]

Rule R21 is an example of inclusive disjunction; that is, the correspondence is found in either environment (or
both) in the same input word. In standard generative phonology, the two subparts of a rule of this type must be
implicitly ordered with the convention that if one of the subparts of the rule applies, the rest of the subparts are
not skipped but also apply (this is called conjunctive ordering in Schane 1973:90). In the two-level model, rule
ordering is both unavailable and unnecessary, since all rule environments are available simultaneously. 

As an example of an exclusive disjunction, consider the situation where the vowel of the ultimate (final)
syllable of a word is lengthened unless it is schwa, in which case the vowel of the penultimate (next to final)
syllable is lengthened. For example, 

LR:  maman  mamanê
SR:  mamän  mamänê

Assume these subsets, where V is the set of short vowels and Vlng is the set of their lengthened counterparts
(but ê is not lengthened): 

  SUBSET V       i a u ê
  SUBSET Vlng    ï ä ü

Rules R22 and R23 (where # represents word boundary) demonstrate a => conflict (see above and section
A3.13 on rule conflicts) and must be collapsed. 

R22        V:Vlng => ___ C*ê#

R23        V:Vlng => ___ C*#

In the example above on tonic and pretonic lengthening (rules R15 to R21), we collapsed the rules with the
vertical bar notation, allowing lengthening to occur in either or both of the environments. This is what we
wanted, since tonic lengthening and pretonic lengthening are separate phonological processes and both are
possible in the same word. But in the present example we are dealing with just one lengthening process,
though with two alternative environments. We want lengthening to occur in one or the other of the
environments but not both in the same word. Rules R22 and R23 can then be collapsed as rule R24 by using
the parenthesis notation. 

 R24       V:Vlng => ___ C*(ê)#

A word-final schwa will not be lengthened by this rule because, even though lexical schwa belongs to the V
subset, no correspondence to a surface long schwa has been declared (see section A3.1 for details on subsets
and declaring feasible pairs). 

A1.7 Understanding two-level environments
One of the defining features of two-level rules is that they can refer to both lexical and surface environments.
(N.B.: This section is based on Dalrymple and others 1987:19-22.) This makes it possible for a two-level



description to handle many phenomena that would require sequentially ordered rules in standard generative
phonology. For example, consider these two rules: 

Nasal Assimilation: 
the nasal character N (unspecified for point of articulation) assimilates to the point of articulation of a
following stop. 

Stop Voicing: 
a voiceless stop is voiced after a nasal. 

These rules relate the lexical sequences Np, Nt, and Nk to the surface sequences mb, nd, and ngg, respectively.
To account for these correspondences, generative phonology would require two rules (the following rules
account only for labials): 

           Nasal Assimilation
R25        N ---> m / ___ p

           Stop Voicing
R26        p ---> b / m ___

The rules must apply in this order, since if rule R26 were applied first it would destroy the environment needed
for rule R25. The two-level versions of these rules do not need to be ordered; in effect they apply
simultaneously: 

           Nasal Assimilation
R27        N:m <=> ___ p:

           Stop Voicing
R28        p:b <=> :m ___

These rules work because of the careful specification of lexical and surface environments. Rule R27 says that a
lexical N is realized as a surface m preceding a lexical p. In this context the notation p: (equivalent to p:@)
stands for the correspondences p:p (by default) and p:b (from rule R28). Rule R28 says that a lexical p is
realized as a surface b following a surface m. The notation :m (equivalent to @:m) stands for the
correspondences m:m (by default) and N:m (from rule R27). Because the two-level model allows rule
environments to have access to both the lexical and surface levels, rule ordering and intermediate levels are not
needed. 

A common error in writing two-level rule environments is to overspecify the environment. Consider this
overspecified version of rule R27: 

            Overspecified version of Nasal Assimilation
R27a        N:m <=> ___ p

Even though the symbol p seems simpler than p:, it actually is more specific, as it stands for the
correspondence p:p only. Rule R27a is now in conflict with the voicing rule (R28), which says that after a
surface m only the correspondence p:b can occur. Conversely, the correspondence p:b of rule R28 is in
conflict with rule R27a, which allows only p:p to occur after a surface m. 

Now consider another incorrectly specified version of the Nasal Assimilation rule (R27): 

            Overspecified version of Nasal Assimilation
R27b        N:m <=> ___ p:b

At first this version seems correct, since it is precisely in the environment of p:b that we want the rule to
apply. The problem is that rule R27b does not require N to be realized as m preceding a lexical p that is realized
as anything other than surface b, and the Voicing rule (R28) does not require p to be realized as b except when
it follows a surface m. Assuming that otherwise lexical N corresponds to surface n, the lexical form Np will be
realized as both np and mb. Thus overspecification does not always result in a rule conflict; it may also result in
overgeneration. (See also section A3.12 on two-level environments.) 



A2 Implementing two-level rules as finite
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Figure A2 FSA for language L1

Figure A3 FST diagram for the correspondence between languages L1 and L2

Figure A4 FST diagram of a => rule

Section A2 explains how two-level rules operate, how they can be implemented as finite state machines, and
how the four types of two-level rules can be translated into finite state tables. 

A2.1 How two-level rules work
To understand how two-level rules work, consider again rule R2, repeated here as rule R29. 

R29        t:c => ___ i

The operator => in this rule means that lexical t is realized as surface c only (but not always) in the
environment preceding i:i. 

The correspondence t:c declared in rule R29 is a special correspondence. A two-level description containing
rule R29 must also contain a set of default correspondences, such as t:t, i:i, and so on. The sum of the
special and default correspondences are the total set of valid correspondences or feasible pairs that can be used
in the description. 

If a two-level description containing rule R29 (and all the default correspondences also) is applied to the lexical
form tati, the PC-KIMMO generator would proceed as follows to produce the corresponding surface form. 

Beginning with the first character of the input form, it looks to see if there is a correspondence declared for it.
Due to rule R29 it will find that lexical t can correspond to surface c, so it will begin by positing that
correspondence. 

          LR:   t  a  t  i
                |
        Rule:   29
                |
          SR:   c



At this point the generator has entered rule R29. For the t:c correspondence to succeed, the generator must
find an i:i correspondence next. When the generator moves on to the second character of the input word, it
finds that it is a lexical a; thus rule R29 fails, and the generator must back up, undo what it has done so far,
and try to find a different path to success. Backing up to the first character, lexical t, it tries the default
correspondence t:t. 

          LR:   t  a  t  i
                |
        Rule:   |
                |
          SR:   t

The generator now moves on to the second character. No correspondence for lexical a has been declared other
than the default, so the generator posits a surface a. 

          LR:   t  a  t  i
                |  |
        Rule:   |  |
                |  |
          SR:   t  a         

Moving on to the third character, the generator again finds a lexical t, so it enters rule R29 and posits a surface
c. 

          LR:   t  a  t  i
                |  |  |
        Rule:   |  |  29
                |  |  |
          SR:   t  a  c

Now the generator looks at the fourth character, a lexical i. This satisfies the environment of rule R29, so it
posits a surface i, and exits rule R29. 

          LR:   t  a  t  i
                |  |  |  |
        Rule:   |  |  29 |
                |  |  |  |
          SR:   t  a  c  i

Since there are no more characters in the lexical form, the generator outputs the surface form taci. However,
the generator is not done yet. It will continue backtracking, trying to find alternative realizations of the lexical
form. First it will undo the i:i correspondence of the last character of the input word, then it will reconsider
the third character, lexical t. Having already tried the correspondence t:c, it will try the default
correspondence t:t. 

          LR:   t  a  t  i
                |  |  |
        Rule:   |  |  |
                |  |  |
          SR:   t  a  t

Now the generator will try the final correspondence i:i and succeed, since rule R29 does not prohibit t:t
before i (rather it prohibits t:c in any environment except before i). 

          LR:   t  a  t  i
                |  |  |  |
        Rule:   |  |  |  |
                |  |  |  |
          SR:   t  a  t  i

All other backtracking paths having failed, the generator quits and outputs the second surface form tati. 

The procedure is essentially the same when two-level rules are used in recognition mode (where a surface form



is input and the corresponding lexical forms are output). 

A2.2 How finite state machines work
The basically mechanical procedure for applying two-level rules makes it possible to implement the two-level
model on a computer by using a formal language device called a finite state machine. The simplest finite
state machine is a finite state automaton (FSA), which recognizes (or generates) the well-formed strings of
a regular language (a certain type of formal language---see Chomsky 1965). While finite state machines are
commonplace in computer science and formal language theory (see, for instance, Hopcroft and Ullman 1979),
they may not be familiar to all linguists. They have, however, had their place in the linguistic literature. Most
widely known would be chapter 3 of Chomsky's Syntactic Structures (1957) in which finite state grammars
are dismissed as an inadequate model for describing natural language syntax. Other notable treatments of finite
state automata in the linguistic literature are Chomsky 1965 and Langendoen 1975. A good introduction to
finite state automata written for linguists is chapter 16 of Partee and others 1987. 

An FSA is composed of states and directed transition arcs. There must minimally be an initial state, a final
state, and an arc between them. A successful transition from one state to the next is possible when the next
symbol of the input string matches the symbol on the arc connecting the states. For example, consider the
regular language L1 consisting of the symbols a and b and the "grammar" abNa  where N >= 0. Well-formed
strings or "sentences" in this language include aa, aba, abba, abbba, and so on. The language L1 is defined
by the FSA in figure A2. 

Figure A2 FSA for language L1

 

State 1 is the initial state and state 3 is the final state (signified by the double circle). States 1 and 2 are both
nonfinal states (signified by the single circle). To recognize the string abba, proceed as follows: 

1. Start at state 1. 

2. Input the first symbol of the string and traverse the a arc to state 2. 

3. Input the second symbol and traverse the b arc back to state 2. 

4. Input the third symbol and again traverse the b arc back to state 2. 

5. Input the last symbol and traverse the a arc to state 3, which is a final state. 

Because the input string is exhausted and the machine is in a final state, we conclude that abba is a string in the
language L1. 

An FSA can also be represented as a state transition table. The FSA above is represented as this state table:

           a  b
           ----
        1. 2  0
        2. 3  2
        3: 0  0

The rows of the table represent the three states of the FSA diagram, with the number of the final state marked



with a colon and the numbers of the nonfinal states marked with periods. The columns represent the arcs from
one state to another; the symbol labeling each arc in the FSA diagram is placed as a header to the column. The
order of the columns in the table has no effect on the operation of the table, but is written to reflect the order of
the FSA. Notice that the two a arcs in the FSA diagram are represented as a single column labeled a. The cells
at the intersection of a row and a column indicate which state to make a transition to if the input symbol
matches the column header. Zero in a cell indicates that there is no valid transition from that state for that input
symbol; in the FSA diagram this is equivalent to having no arc labeled with that input symbol. The machine is
said to fail when this happens, thus rejecting the input form. Note that the colon marks state 3 as the only final
state. This means that if the machine is in any state but 3 when the input string is exhausted, the string is not
accepted. The 0 transitions in state 3 say that once the machine gets to that state, the string is not accepted if
there are remaining input symbols. 

An FSA operates only on a single input string. A finite state transducer (FST) is like an FSA except that it
simultaneously operates on two input strings. It recognizes whether the two strings are valid correspondences
(or translations) of each other. For example, assume the first input string to an FST is from language L1
above, and the second input string is from language L2, which corresponds to L1 except that every second b is
c. Here is an example correspondence of two strings: 

L1: abbbba
L2: abcbca

Figure A3 shows the FST in diagram form. Note that the only difference from an FSA is that the arcs are
labeled with a correspondence pair consisting of a symbol from each of the input languages. 

Figure A3 FST diagram for the correspondence between languages L1 and L2

 

FSTs can also be represented as tables, the only difference being that the column headers are pairs of symbols,
such as a:a and b:c. For example, the following table is equivalent to the FST diagram in figure A3. 

           a b b
           a b c
           -----
        1. 2 0 0
        2. 4 3 0
        3. 4 0 2
        4: 0 0 0

A2.3 A => rule as a finite state machine
The key insight of PC-KIMMO is that if phonological rules are written as two-level rules, they can be
implemented as FSTs running in parallel. In the next four subsections we briefly show how each of the four
rule types (see section A1.5) translates into an FST. Detailed procedures for compiling rules into state tables
are found in section A3. 

Consider rule R30. 

R30        t:c => ___ i



In terms of FSTs, this rule defines two "languages" that are translations of each other. The "upper" or lexical
language specifies the string ti; the "lower" or surface language says that ci may correspond to it. Note,
however, that a two-level rule does not specify the grammar of a full language. Rather it deals with allowed
substrings. A possible paraphrase of rule R30 is, "If ever the correspondence t:c occurs, it must be followed
by i:i." In other words, if anything other than t:c occurs, this rule ignores it. This fact must be incorporated
into our translation of a two-level rule into a transition diagram, shown in figure A4. In this FST, state 1 is
both the initial and only final state. The @:@ arc (where @ is the ANY symbol, see section A1.3) allows any
pairs to pass successfully through the FST except t:c and i:i. 

Figure A4 FST diagram of a => rule

 

Rule R30, represented as the FST in figure A4, translates into the following state table, labeled T30. (In the
remainder of this chapter, each rule and its corresponding state table have the same label number, for instance
R30 and T30.) Notice that state 1, the initial state, is a kind of "default" state that ignores everything except the
substring crucial to the rule. 

T30    Example of a => table
            t i @
            c i @
            -----
         1: 2 1 1
         2. 0 1 0

A set of two-level rules is implemented as a system of parallel FSTs that specify all the feasible pairs and
where they can occur. A state table is constructed such that the entire set of feasible pairs in the description is
partitioned among the column headers with no overlap. That is, each and every feasible pair of the description
must belong to one and only one column header. Table T30 specifies the special correspondence t:c and the
environment in which it is allowed. The @:@ column header in table T30 matches all the feasible pairs that are
defined by all other FSTs of the system. Thus, with respect to table T30, @:@ does not stand for all feasible
pairs; rather it stands for all feasible pairs except t:c and i:i. 

The default correspondences of the system must be declared in a trivial FST like table T31 (see section A3.2
(step 2) and section A4.4): 

T31    Table of default correspondences}
              p t k a i u @
              p t k a i u @
              -------------
          1:  1 1 1 1 1 1 1

Even this table of default correspondences must include @:@ as a column header. Otherwise it would fail when
it encountered a special correspondence such as t:c. This is due to the fact that all the rules in a two-level
description apply in parallel, and for each character in an input string all the rules must succeed, even if
vacuously. Now given the lexical form tatik, tables T30 and T31 will work together to generate the surface
forms tatik and tacik. 

To understand how to represent two-level rules as state tables, we must understand what the two-level rules
really mean. (See section A1.5 above.) We tend to think of two-level rules positively, that is, as statements of
where the correspondence succeeds. In fact, state tables are failure-driven; they specify where correspondences
must fail. It is natural to think of rule R30 as saying that the correspondence t:c succeeds when it occurs
preceding i:i. But state table T30 actually works because it fails when anything but i:i follows t:c (the
zeros in state 2 indicate that the input has failed). This reorientation to thinking of phonological rules as
failure-driven is one of the most difficult barriers to overcome in learning to write two-level rules and state
tables, but it is the primary key to success with PC-KIMMO. 



In summary, the rule type L:S => E (where L:S is a lexical:surface correspondence and E is an environment)
positively says that L is realized as S only in E. Negatively it says that L realized as S is not allowed in an
environment other than E. The state table for a => rule must be written so that it forces L:S to fail in any
environment except E. In logical terms, the => operator indicates conditionality, such that, if L:S exists, then it
must be in E. 

A2.4 A <= rule as a finite state machine
Rule R32 below is the same as rule R30 except that it is written with the <= operator. 

R32        t:c <= ___ i

This rule says that lexical t is always realized as surface c when it occurs before i:i, but not only before i:i.
Thus the lexical form tati will successfully match the surface form taci but not tati. Note, however, that it
would also match caci since it does not disallow t:c in any environment. Rather, its function is to disallow
t:t in the environment of a following i:i. Remembering that state tables are failure-driven, the strategy of
writing the state table for rule R32 is to force it to fail if it recognizes the sequence t:t i:i. This allows the
correspondence t:c to succeed elsewhere. The state table for rule R32 looks like this: 

T32    Example of a <= table
            t t i @
            c t i @
            -------
        1:  1 2 1 1
        2:  1 2 0 1

In state 1 any occurrences of the pairs t:c, i:i, or any other feasible pairs are allowed without moving from
state 1. It is only the correspondence t:t that forces a transition to state 2, where all feasible pairs succeed
except i:i (the zero in the i:i column indicates that the input has failed). Notice that state 2 must be a final
state; this allows all the correspondences except i:i to succeed and return to state 1. Also notice that in state 2
the cell under the t:t column contains a two. This is necessary to allow for the possibility of a tt sequence in
the input form; for instance, table T32 will apply to the lexical form tatti to produce the surface form tatci.
This phenomenon is called backlooping and is treated in detail in section A3.4, part 2. 

Actually, table T32 is potentially overspecified. It is not really the pair t:t that is disallowed before i, but
rather the pair t:¬c; that is, lexical t and surface not-c (anything but c). Suppose our two-level description
also contained a rule that defined a t:n correspondence. Like t:t, t:n should fail before i:i. Rather than add
another column for t:n to table T32, we can replace the column header t:t with t:@. Given that the more
specific correspondence t:c is also declared in the table, t:@ will match all other valid surface
correspondences to lexical t, such as t:t, t:n, and so on. Here is table T32 revised to use a t:@ column
header. 

T32a    A <= table
            t t i @
            c @ i @
            -------
        1:  1 2 1 1
        2:  1 2 0 1

In summary, the rule type L:S <= E positively says that L is always realized as S in E. Negatively it says that L
realized as any character but S is not allowed in E. The state table for a <= rule must be written so that it forces
all correspondences of L with anything but S to fail in E. Logically, the <= operator indicates that if L is in E,
then it must correspond to S. 

A2.5 A <=> rule as a finite state machine
Rule R33 uses the <=> operator and is equivalent to combining rules R32 and R30. 

R33        t:c <=> ___ i



The state table for a <=> rule is simply the combination of the <= and the => tables. The state table for rule
R33 is built by combining tables T32a and T30 to produce table T33 below. The column headers of table T33
are the same as table T32a. States 1 and 2 represent the <= part of the table (corresponding to table T32a) while
states 1 and 3 represent the => part (corresponding to table R30). 

T33    Example of a <=> table
            t t i @
            c @ i @
            -------
        1:  3 2 1 1
        2:  3 2 0 1
        3.  0 0 1 0

In summary, the rule type L:S <=> E says that L is always and only realized as S in E. It implies that L:S is
obligatory in E and occurs nowhere else. The state table for a <=> rule must be written so that it forces all
correspondences of L with anything but S to fail in E, and forces L:S to fail in any environment except E. 

A2.6 A /<= rule as a finite state machine
Rule R34 exemplifies the fourth type of rule, the /<= rule. 

 R34       t:c /<= ___ i:ê

This rule states that the correspondence t:c is disallowed when it precedes a lexical i that is realized as a
surface ê. As the /<= operator suggests, this rule type shares properties of the <= type rule. It states that the
correspondence always fails in the specified environment, but allows it (does not prohibit it) in any other
environment. The strategy for building a state table for the /<= rule is to recognize the correspondence in the
specified environment and then fail. In table R34 the correspondence t:c forces a transition to state 2 where
the table fails if it encounters the environment i:ê, but succeeds otherwise. Notice that like table T32 above for
a <= rule, state 2 is final. 

T34    Example of a /<= table
            t i @
            c ê @
            -----
        1:  2 1 1
        2:  2 0 1

In summary, the rule type L:S /<= E positively says that L is never realized as S in E. Negatively it says that L
realized as S is not allowed in E. Logically, the /<= operator indicates that if L is in E, then it must correspond
to ¬S. 

A3 Compiling two-level rules into state
tables
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Section A3.1 gives an overview of the structure of the rules component. Section A3.2 is a reference summary
of the general procedure for compiling (translating) two-level rules into state transition tables. Detailed
examples of how to apply the general procedure are found in sections A3.4 through A3.7. Sections A3.8
through A3.16 treat in detail various topics related to rule compilation, such as subsets, word boundary
environments, complex environments, rule conflicts, and phonotactic constraints. 

A3.1 Overview of the rules component
This section discusses alphabetic characters, feasible pairs, using the ANY symbol and subset names,
declaring default and special correspondences, mapping feasible pairs to column headers, and applying rules in
parallel. Some of these topics, discussed here concisely, are covered in more detail in sections A3.4 through
A3.16 and in section A4. 

Alphabetic characters

All characters or symbols used in either lexical or surface forms in the description constitute the alphabet used
by the rules. The NULL symbol and the BOUNDARY symbol are also considered alphabetic characters,
though in the rules file they are declared separately from the rest of the alphabet (see section A4.1). The ANY
symbol and subset names are not part of the alphabet. 

Feasible pairs

A feasible pair is a specific correspondence between a lexical alphabetic character and a surface alphabetic
character. The set of feasible pairs is the set of all such correspondences used in a description. Some of these
correspondences are default correspondences, where the lexical and surface characters are identical (for



instance t:t and i:i); others are special correspondences, where the surface character differs from the lexical
character (for instance t:c and i:ï). Each feasible pair, whether a default or special correspondence, must be
explicitly declared in a description. This is done by including each feasible pair as a column header in at least
one state table. Only column headers consisting of alphabet characters, including the NULL symbol and the
BOUNDARY symbol, are considered feasible pairs. Column headers containing the ANY symbol or subset
names are ignored for the purpose of declaring feasible pairs. 

When the user runs PC-KIMMO and loads a set of rules from a disk file, the column headers of every state
table are scanned as they are read in and a list of feasible pairs is compiled. After the rules are loaded, the user
can see the entire set of feasible pairs currently in use by the rules component by issuing the list pairs
command (see section 4.5.5). It should also be remembered that the set of feasible pairs is revised each time
one or more rules is turned on or off by means of the set rules [ on | off ] command (see section 4.5.6.1). 

Using the ANY symbol and subset names in column headers

Although correspondences that contain the ANY symbol or subset names are not feasible pairs and cannot
serve as the correspondence part of a rule, they do occur in the environment part of a rule and therefore appear
as column headers in state tables. In order to write correct state tables, the analyst must understand exactly
what set of pairs is specified by column headers that contain the ANY symbol or subset names. Although the
ANY symbol is said to be a "wildcard" character that can stand for any alphabetic character, its effective
meaning relative to a given set of rules is determined by the set of feasible pairs sanctioned by the rules. For
example, in a set of rules the correspondence t:@ (where @ has been declared to be the ANY symbol) does not
represent all possible correspondences that have t as their lexical character and any other member of the
alphabet as their surface character; rather, it represents only the feasible pairs that match its pattern, for instance
t:t and t:c if those correspondences are feasible pairs by virtue of appearing as column headers in one or
more tables. 

Similarly, a subset name is said to stand for a set of alphabetic characters; but its effective meaning relative to a
given set of rules is determined by the set of feasible pairs sanctioned by the rules. For example, in a set of
rules where the subset Spal has been declared to have the members s, x, and z, the correspondence s:Spal
does not represent all possible correspondences that have s as their lexical character and one of the members of
the subset Spal as their surface character; rather, it represents only the feasible pairs that match its pattern, for
instance s:s and s:z if these are the only correspondences involving lexical s that have been used as column
headers in one or more tables. This means that using the correspondence s:Spal as a column header in a rule
does not implicitly declare as feasible pairs all correspondences that match it. That is, unless the
correspondence s:x is explicitly declared as a feasible pair somewhere in the set of rules, it is not included in
the set of feasible pairs represented by the correspondence s:Spal. (For more on using subsets, see section
A3.8.) 

Declaring default correspondences

The fact that each valid correspondence used in a description must be explicitly declared as a feasible pair in the
rules has consequences for how default correspondences are declared. Since rules are written to express the
conditions under which special correspondences occur, default correspondences are not normally included in
each rule. Thus, in order to get every feasible pair into a column header of a state table, the rules component
must contain a table strictly for the purpose of declaring the default correspondences (see sections A2.3 and
A4.4). A table of default correspondences has only one state (which is a final state), and each transition is back
to state 1. The column headers provide the list of default correspondences, with @:@ (where @ is the ANY
symbol) appended to the end of the list so as not to block the occurrence of special correspondences. It is
impossible to include too many correspondences in this list. That is, it would be possible to make the list
include every feasible pair and dispense with the final @:@. It is possible to underspecify, however. If a
feasible pair is left out of the table of default correspondences and does not occur explicitly in any other table,
then that correspondence will never be recognized as valid. For the sake of consistency, the table of default
correspondences should even include pairs that also appear in the environments of other tables; the redundancy
has no effect on the operation of the rules. (For more on writing tables of default correspondences, see section
A4.4.) 

Declaring special correspondences



Special correspondences do not need to be gathered into one table as is done with default correspondences
since most special correspondences are used as column headers in the rules that apply to them. However, if a
set of special correspondences is represented with subsets, it may be necessary to write a separate table
declaring the special correspondences as feasible pairs. For example, consider a rule whose correspondence
part is D:P, where D is a subset that contains the alveolar consonants t, d, and s and P is a subset that contains
the palatalized consonants c, j, and S. The intention of the analyst is that the subset correspondence D:P
should stand for the feasible pairs t:c, d:j, and s:S. However, in the state table for this rule the column
header D:P will not match any feasible pairs except those that have been explicitly declared elsewhere. In this
situation it is best to write a separate table where the feasible pairs intended to match the subset correspondence
are explicitly used as column headers. For the sake of consistency this should be done even if the pairs do
appear in tables elsewhere in the description; the possible redundancy has no effect on the operation of the
rules. (For more on using subsets, see section A3.8.) 

Mapping feasible pairs to column headers

As was described above, when a set of rules is loaded and the list of feasible pairs is compiled, the set of pairs
that match each column header is determined. In the example above, the pairs t:c, d:j, and s:S should match
the column header D:P. In this instance the meaning of the column header D:P is understood relative to the
entire set of rules. However, relative to a single rule, a column header may actually specify only a subset of the
pairs that it specifies relative to the entire rule set. This situation arises as follows. 

Each state table must be constructed such that every feasible pair is represented by one of its column headers.
That is, for each table in a rule set, the entire list of feasible pairs is partitioned among the column headers with
no overlap. In a table, each feasible pair belongs to one and only one column header. After loading a set of
rules and compiling the list of feasible pairs, PC-KIMMO goes through the set of rules again to interpret the
column headers of each table. For each table it scans the list of all the feasible pairs and assigns each one to a
column header. If a feasible pair matches more than one column header, it is assigned to the most specific one,
where the specificity of a column header is defined as the number of feasible pairs that match it. For example,
consider a table that contains both an s:S column header and a D:P column header, where the feasible pairs
that match it include t:c, d:j, and s:S. When PC-KIMMO tries to assign the feasible pair s:S to a column
header in this table, it finds that it matches both the s:S column and the D:P column. PC-KIMMO will assign it
to the s:S column, since it is more specific than the D:P column (one versus three pairs that match). This
means that, relative to this particular rule, the D:P column header represents only two feasible pairs, namely
t:c and d:j. When running PC-KIMMO, the user can see exactly how feasible pairs are assigned to the
column headers of a table by using the show rule command (see section 4.5.9). 

It is possible to construct a state table in which a feasible pair matches multiple column headers that have the
same specificity value, thus making it impossible to uniquely assign the pair to a column header. This
constitutes an incorrectly written state table. When a rules file containing such a state table is loaded, a warning
message is issued alerting the user that two columns have the same specificity. If the user proceeds to analyze
forms with the incorrectly written table, the pair will be assigned (arbitrarily) to the leftmost column that it
matches. Correct results cannot be assured. (For more on the problem of overlapping column headers, see
section A3.9.) 

In order to get every feasible pair in the column headers of a table without having to literally specify each pair,
a column header of the form @:@ (where @ is the ANY symbol) is included in the table. This covers all pairs
that are not part of the correspondence and environment of the rule. 

Applying rules in parallel

To understand how the PC-KIMMO rules component works to generate and recognize forms, it must be kept
in mind that two-level rules, represented as finite state tables, apply in parallel (or simultaneously). This means
that for an input form to be successfully processed by PC-KIMMO, all of the rules must succeed. In other
words, as each character of the input form is processed, it must pass successfully through every rule before the
next character can be processed. It is precisely because of PC-KIMMO's parallel rule application that each state
table must represent in its column headers the entire set of feasible pairs. 

A3.2 General procedure for compiling rules into tables



This section presents a step-by-step procedure for compiling rules into state tables. The following
abbreviations are used in the discussion. 

L 
a lexical character 

S  
a surface character 

¬ S  
any surface character but S 

L:S 
the lexical-to-surface correspondence on left side of rule 

E 
an environment 

¬ E  
any environment but E 

lc 
the left context in the environment 

rc 
the right context in the environment 

0  
the NULL symbol 

@ 
the ANY symbol 

#  
the BOUNDARY symbol 

1. Make a complete inventory of all the possible lexical-to-surface correspondences found in the data.
From this, compile a list of all the symbols used as lexical and surface characters, including the NULL
symbol and the BOUNDARY symbol. This full list is the alphabet used by the rules. The rules will
also use the ANY symbol and subset names. 

2. Declare all the default correspondences required by the description. This is done by writing one or
more tables that contain only and all the default correspondences (see section A4.4). 

3. For each special correspondence (L:S), write down your hypothesis about the environment (E) in
which it occurs. (The environment may be disjunctive; that is, E1 or E2 or E3.) For each
correspondence, answer the following two questions: 

a. Is E the only environment in which L:S is allowed? 

b. Must L always be realized as S in E? 

There are four possible outcomes. Depending on the outcome, do one of the following: 

a. If a is yes and b is no, posit the rule L:S => E and proceed to step 4. 

b. If a is no and b is yes, posit the rule L:S <= E and proceed to step 5. 

c. If both a and b are yes, posit the rule L:S <=> E and proceed to step 6. 



d. If neither is yes, find the other environments in which L:S is allowed, combine these into a single
disjunctive environment, and go through step 3 again. 

It is also possible that it is easier to express the constraint on L:S in terms of the environment in which
it is prohibited. In this case, posit the rule L:S /<= E and proceed to step 7. If L:S contains subset
names, it may be necessary to write a separate table to declare as feasible pairs the correspondences
that L:S is intended to represent (see sections A3.8 and A4.4). 

4.  Compile each => rule. The rule L:S => lc___rc can be paraphrased as "the expression lc L:S rc
is allowed, but L:S in any other context is not allowed." The strategy for compiling a => rule to a state
table is to construct a table that recognizes the sequence lc L:S rc, forbids any other occurrence of
L:S, and permits any other correspondences to occur anywhere. The steps in building the table are as
follows: 

a. Make a list of column headers for the table by writing down all the correspondences used in the
expression lc L:S rc (including correspondences with @ and subset names). Add @:@ to the end of
the list. 

b. Beginning with state 1, add states (rows) and fill in the state transitions in the appropriate cells in
the table to recognize the expression lc L:S rc. The final symbol in the expression normally should
result in a transition back to state 1, except when backlooping is involved (see step 8 below). 

c. Use a colon to mark state 1 as a final state (that is, 1:). Mark every state that is traversed before L:S
is reached as a final state. Mark the state in which L:S is recognized as a final state. Use a period to
mark all states traversed after that point as nonfinal (for instance, 2.). That is, once L:S is encountered
it is not in the correct environment unless the full right context is found; thus these states cannot be
final. 

d. Since L:S in any other environment is not allowed, fill in the rest of the column for L:S with zeros.
Furthermore, in any state traversed during the recognition of the right context, any correspondence
encountered other than those provided for in rc means that L:S is in the wrong context. Thus, the rest
of the cells for the states traversed in rc should be filled with zeros. 

e. All remaining cells in the transition table denote successful transitions as far as this rule is
concerned. In most cases, these cells are filled with transitions back to the initial state (that is, 1),
except where backlooping occurs (see step 8). 

5. Compile each <= rule. The rule L:S <= lc___rc can be paraphrased as "the expression lc L:¬S rc
is not allowed." The strategy for compiling a <= rule to a state table is to construct a table that
recognizes the sequence lc L:¬S rc and forbids it, while permitting any other correspondences to
occur anywhere. (Note that the strategy for building the <= rule for an insertion, where L is 0 (the
NULL symbol), is slightly different; see section A3.7.) The steps in building the table are as follows: 

a. Make a list of column headers for the table. First, put down L:S. Next, put down L:@, which now
represents L:¬S. Next, write down all the correspondences used in lc and rc (including
correspondences with @ and subset names). Add @:@ to the end of the list. 

b. Beginning with state 1, add states (rows) and fill in the state transitions in the appropriate cells in
the table to recognize the expression lc L:@ rc. The final symbol in the expression should result in
failure (that is, the cell representing recognition of the final symbol should contain 0 (zero)). 

c. Use a colon to mark every state as a final state. 

d. All remaining cells in the transition table denote successful transitions as far as this rule is
concerned. In most cases, these cells are filled with transitions back to the initial state (that is, 1),
except where backlooping occurs (see step 8). 

6. Compile each <=> rule. The rule may be compiled as two separate state tables, one for the <= rule and
the other for the => rule. Or, the rule may be compiled as a single table that combines the <= and =>



rules. In this case, construct the column headers as in 5a. Then perform steps 5b through 5d to encode
the <= side of the rule. Finally, perform steps 4b through 4e to add the => side of the rule. In 4b, add
new states only as needed for the recognition of rc; the recognition of lc is the same. In 4c, mark as
nonfinal the states added to recognize rc. (Alternatively, steps 4b to 4e can be done before steps 5b to
5d.) 

7. Compile each /<= rule. The rule L:S /<= lc___rc can be paraphrased as "the expression lc L:S rc
is not allowed." The strategy for compiling a /<= rule to a state table is to construct a table that
recognizes the sequence lc L:S rc and forbids it, while permitting any other correspondences to
occur anywhere. The steps in building the table are as follows: 

a. Make a list of column headers for the table by writing down all the correspondences used in the
expression lc L:S rc (including correspondences with @ and subset names). Add @:@ to the end of
the list. 

b. Beginning with state 1, add states (rows) and fill in the state transitions in the appropriate cells in
the table to recognize the expression lc L:S rc. The final symbol in the expression should result in
failure (that is, the cell representing recognition of the final symbol should contain 0 (zero)). 

c. Use a colon to mark every state as a final state. 

d. All remaining cells in the transition table denote successful transitions as far as this rule is
concerned. In most cases, these cells are filled with transitions back to the initial state (that is, 1),
except where backlooping occurs (see step 8). 

8. Check for backlooping. A backloop is a transition to a state that represents a previous point in the
expression being recognized. The final step in compiling a rule (see steps 4e, 5d, and 7d) is to specify
the transitions for all the remaining cells in the state table that are not part of the environment
expression. Normally these are transitions back to state 1. However, backloops to states other than 1
must be specified if an input pair (or sequence of pairs) is recognized that matches the first symbol (or
sequence of symbols) of the expression lc L:S rc. Transitions must be specified back to the states
that represent the successful recognition of that symbol (or sequence of symbols). A detailed example
of backlooping is given in part 2 of section A3.4. 

A3.3 Summary of two-level rule semantics
The semantics of the four kinds of two-level rules are now summarized in two ways. First, in figure A5 a
number of paraphrases are given for each rule type. Second, in figure A6 truth tables (as in formal logic) are
given. Note that the <= and => rules have the familiar conditional pattern of formal logic. The <=> rule is the
conventional biconditional. 

Figure A5 Semantics of two-level rules

L:S => E   "Only but not always."
            L is realized as S only in E.
            L realized as S is not allowed in ¬E.
            If L:S, then it must be in E.
            Implies L:¬S in E is permitted.

L:S <= E   "Always but not only."
            L is always realized as S in E.
            L realized as ¬S is not allowed in E.
            If L is in E, then it must be L:S.
            Implies L:S may occur elsewhere.

L:S <=> E   "Always and only."
             L is realized as S only and always in E.
             Both L:S => E and L:S <= E.
             Implies L:S is obligatory in E and occurs nowhere else.

L:S /<= E   "Never."



             L is never realized as S in E.
             L realized as S is not allowed in E.
             If L is in E, then it must be L:¬S.

Figure A6 Truth tables for two-level rules

+---------------------------------------------------------------------------------+
| There is an L.              || Is the rule satisfied?                           |
|-----------------------------++--------------------------------------------------|
| Is it realized  | Is it in  ||           |           |             |            |
| as S?           | E?        || L:S => E  | L:S <= E  | L:S <=> E   | L:S /<= E  |
|-----------------+-----------++-----------+-----------+-------------+------------|
|      T          |   T       ||  T        |  T        |  T          |  F         |
|      T          |   F       ||  F        |  T        |  F          |  T         |
|      F          |   T       ||  T        |  F        |  F          |  T         |
|      F          |   F       ||  T        |  T        |  T          |  T         |
+---------------------------------------------------------------------------------+

A3.4 Compiling rules with a right context
This section gives step-by-step examples of how to apply the general procedure given in section A3.2 for
compiling rules into state tables to rules with only a right context. In the exposition of the following examples,
phrases such as "part4" or "step 4a" refer to the numbered subparts of section A3.2. 

(1) Compiling a => rule with a right context

As an example, we will posit a p:b correspondence preceding +m (strictly, +:0 m:m), where the symbol +
stands for a morpheme boundary. Assume that + is always deleted in surface forms and can thus be declared as
the default correspondence +:0. Examples of the p:b correspondence are: 

LR:  ap+ma  ap+ma  ap+ba
SR:  ab0ma  ap0ma  ap0ba

According to the diagnostic questions in part 3, these correspondences indicate that p is not always realized as
b before +m (p:p also occurs before +m), but that +m is the only environment in which p:b is allowed.
Therefore, posit a => rule: 

R35        p:b => ___ +:0 m

To compile rule R35 to a state table, follow the steps in part 4. First (step 4a), make a list of the column
headers, consisting of all the correspondences used in rule R35 plus @:@: 

         p + m @
         b 0 m @

The order of the columns of a state table do not affect its operation, but it is helpful to the reader to keep the
columns in the same order as lc L:S rc so far as possible. 

Next (step 4b), add rows (representing states) and fill in the cells with transitions to recognize the sequence
p:b +:0 m:m. When the final symbol of the sequence (m:m) is reached, a transition is made back to state 1. 

           p + m @
           b 0 m @
           -------
        1  2      
        2    3    
        3      1 



Next (step 4c), mark state 1 as a final state (that is, 1:). This allows the table to succeed on any correspondence
that does not occur in L:S rc. Step 4c says that every state traversed before and including the state where L:S
is recognized is marked as a final state. Since p:b is recognized in state 1, this is irrelevant. However, all states
traversed after that point must be marked as nonfinal; that is, once p:b is recognized, it is not in the correct
environment until the entire right context is found. Thus, states 2 and 3 cannot be final. 

           p + m @
           b 0 m @
           -------
        1: 2      
        2.   3    
        3.     1 

Next (step 4d), fill in the rest of the column for p:b with zeros, since p:b in any other environment is not
allowed. Also, for all the states traversed during the recognition of the right context, any correspondences
other than those that are part of the right context mean that p:b is in the wrong context. Thus, the rest of the
cells in rows 2 and 3 must be filled with zeros: 

           p + m @
           b 0 m @
           -------
        1: 2      
        2. 0 3 0 0
        3. 0 0 1 0

Finally (step 4e), all remaining cells are successful transitions for this rule and can be filled in with transitions
back to the initial state (that is, state 1). Note that since the remaining empty cells are in state 1 and do not
involve the first correspondence of L:S rc, backlooping (part 8) is not involved. Table T35 now gives the
complete transition table for rule R35. 

T35    => table with right context
           p + m @
           b 0 m @
           -------
        1: 2 1 1 1
        2. 0 3 0 0
        3. 0 0 1 0

(2) Compiling a <= rule with a right context

Now suppose that the p:b correspondence is found in these forms (rather than the ones above): 

LR:  ap+ma  ap+ba  ap+ba
SR:  ab0ma  ap0ba  ab0ba

According to the questions in part 3, these correspondences indicate that p is always realized as b before +m,
but +m is not the only environment in which p:b is allowed (p:b also occurs before +b). Therefore, posit a <=
rule: 

R36        p:b <= ___ +:0 m

To compile rule R36 to a state table, follow the steps in part 5. First (step 5a), make a list of the column
headers, consisting of p:b, p:@, the correspondences used in the right context, and @:@: 

         p p + m @
         b @ 0 m @

Due to the presence of p:b, p:@ means all other feasible pairs with a lexical p. In other words, it represents
p:¬b. 

Next (step 5b), add rows (states) and fill in the cells with transitions to recognize the sequence p:@ +:0 m:m.
When the final symbol of the sequence is reached (m:m), the cell is filled with zero, indicating failure. 



           p p + m @
           b @ 0 m @
           ---------
        1    2      
        2      3    
        3        0 

Next (step 5c), mark every state as final: 

           p p + m @
           b @ 0 m @
           ---------
        1:   2      
        2:     3    
        3:       0 

Finally (step 5d), all remaining cells denote successful transitions back to the initial state and are filled in with
ones, with the exception of cells where backlooping applies. To demonstrate backlooping, we will first ignore
it and fill in the table with ones: 

T36        p p + m @
           b @ 0 m @
           ---------
        1: 1 2 1 1 1
        2: 1 1 3 1 1
        3: 1 1 1 0 1

There is a problem with this state table. As written, table T36 does not work correctly with more than one p in
succession. For instance, given the lexical form app+ma, it will return appma, without voicing the second p.
Step the example app+ma through table T36 to verify this. When the second p:p is encountered while in state
2, the FST will make a transition back to state 1, where +:0 and m:m are recognized, leaving the FST in state
1. To remedy this, the FST must loop back to state 2 when it encounters p:p: 

T36a       p p + m @
           b @ 0 m @
           ---------
        1: 1 2 1 1 1
        2: 1 2 3 1 1
        3: 1 1 1 0 1

But table T36a will still fail to recognize an input form such as ap+p+ma. This is because when the second p:p
is encountered in state 3, the FST will make a transition back to state 1, again losing the fact that we are in the
environment for the change. The table must be revised so that the FST will loop back to state 2 when a p:p is
encountered in state 3 as well: 

T36b    <= table with right context
           p p + m @
           b @ 0 m @
           ---------
        1: 1 2 1 1 1
        2: 1 2 3 1 1
        3: 1 2 1 0 1

This is an example of the explanation given in part 8 of how to handle backlooping. Backlooping is a subtle
but important point, and is the source of many errors in compiling tables. The name is intended to convey the
idea that the FST must have transitions (loops) back to the states where symbols (or sequences of symbols) of
the expression lc L:S rc have been recognized. The notion of backlooping transitions is clearer when the
FST is represented as a diagram; see figure A7 (which is equivalent to table T36b, except that transitions back
to state 1 are not drawn). There are two backloops in this FST: from state 2 there is an arc for p:@ back to state
2, and from state 3 there is another arc for p:@ back to state 2. 

Figure A7 FST with backlooping



 

Why didn't we encounter backlooping while writing the state table for rule R35 above? With respect to
backlooping, it may seem that table T35 should be written as follows (where states 2 and 3 have an arc back to
state 2 if a p:b is recognized): 

T35a       p + m @
           b 0 m @
           -------
        1: 2 1 1 1
        2. 2 3 0 0
        3. 2 0 1 0

The answer is that in this case step 4d overrides backlooping. Rule R35 is a => rule, which means that the
correspondence p:b is disallowed in any environment other than preceding +m. Table T35a, however, would
allow p:b to occur preceding another p:b or preceding the sequence +:0 p:b. To prevent this, step 4d
requires the p:b column to contain zeros in states 2 and 3. 

As a matter of practice in writing a state table, the analyst should carefully check the column that represents the
first symbol of the expression lc L:S rc to see which state to loop back to in each state of the table. 

Often it does not seem necessary in practice to account for backlooping because of language-specific
phonotactic constraints. Taking the example word app+ma discussed above, suppose that the language being
described does not have morphemes like app; that is, a phonotactic constraint prohibits the sequence VCC. In
such a case, state table T36 (written without backloops) would always work correctly as long as it was given
input conforming to the phonotactic constraints of the language. There are two reasons why we recommend
that the user of PC-KIMMO write tables that account for backlooping even when it seems unnecessary. 

First, if you are inductively developing a phonological analysis, you will not necessarily know all the
phonotactic constraints until the entire analysis is completed. If rules are written with incorrect backloops,
puzzling failures may occur when further data are collected that contain new phonotactic patterns. 

Second, it is conceptually cleaner to keep phonotactic constraints separate from the general phonological rules.
Rather than incorporating phonotactic constraints in tables that encode phonological rules, it is better to write
tables so that they are minimally restrictive with respect to phonotactics. The analyst can encode phonotactic
constraints in a set of rules (tables) dedicated specifically to that purpose. For more discussion on expressing
phonotactic constraints, see section A3.16. 

(3) Compiling a <=> rule with a right context

Now suppose that the p:b correspondence is found only in forms like these: 

LR:  ap+ma  ap+ba
SR:  ab0ma  ap0ba

According to the questions in part 3, these correspondences indicate that p is always realized as b before +m,
and that +m is the only environment in which p:b is allowed. Therefore, posit a <=> rule: 

R37     p:b <=> ___ +:0 m



As was explained in part 6 of section A32., a <=> rule can be compiled as two separate state tables, one for the
<= rule and one for the => rule. This is what has been done to produce state tables T35 and T36b above.
Alternatively, a <=> rule can be compiled as a single table. To do this (see part 6), first construct the column
headers by following the instructions in step 5a: 

         p p + m @
         b @ 0 m @

Next perform steps 5b through 5d to construct the <= part of the rule: 

           p p + m @
           b @ 0 m @
           ---------
        1:   2 1 1 1
        2:   2 3 1 1
        3:   2 1 0 1

Now perform steps 4b through 4e to add the => part of the rule: 

T37    <=> table with right context
           p p + m @
           b @ 0 m @
           ---------
        1: 4 2 1 1 1
        2: 4 2 3 1 1
        3: 4 2 1 0 1
        4. 0 0 5 0 0
        5. 0 0 0 1 0

Notice that to recognize p:b and the right context +:0 m:m, two states (4 and 5, corresponding to states 2 and
3 in table T35) must be added to the table. These states are nonfinal states. 

Special attention must be paid to the transitions in states 2 and 3 of table T37. For the p:@ column, states 2 and
3 must loop back to state 2, which is the state in the <= part of the rule where p:@, the first symbol of the
expression lc L:S rc, has been recognized. This is identical to table T36b. For the p:b column, states 2 and
3 must make a transition to state 4, which is the second state of the => part of the rule. This is the same
transition as in state 1. 

(4) Compiling a /<= rule with a right context

The fourth rule type, the /<= rule, disallows the correspondence in the specified environment. For example,
rule R38 prohibits p:b before +m. 

R38     p:b /<= ___ +:0 m

The state table that encodes rule R38 must recognize the sequence p:b +:0 m:m and then forbid it. As the left
arrow of the /<= operator suggests, the semantics of this rule type is most similar to the <= rule. Whereas rule
R36 above (a <= rule) states that p is always (obligatorily) realized as b before +:0 m but may also be realized
as b in some other environment, rule R38 (a /<= rule) states that p is always (obligatorily) prohibited before
+:0 m:m, but may be realized as b in some other environment. 

To compile rule R38 to a state table, follow the steps in part 7. First (step 7a), make a list of the column
headers needed to recognize p:b and the environment plus @:@: 

         p + m @
         b 0 m @

Notice that unlike table T36b, which expresses a <= rule, we do not need a p:@ column header. This is
because table T36b is built to prohibit the sequence p:¬b +:0 m:m, but the table we are building for a /<= rule
must prohibit p:b +:0 m:m. 



Next (step 7b), add rows (states) and fill in the cells with transitions to recognize the sequence p:b +:0 m:m.
When the final symbol of the sequence is reached (m:m), the cell is filled with zero, indicating failure. 

           p + m @
           b 0 m @
           -------
        1  2      
        2    3    
        3      0 

Next (step 7c), mark every state as final: 

           p + m @
           b 0 m @
           -------
        1: 2      
        2:   3    
        3:     0 

Finally (step 7d), all remaining cells denote successful transitions and are filled in with ones, with the
exception of cells that meet the conditions of backlooping (part 8). Specifically, the cells in column p:b for
states 2 and 3 must make a transition back to state 2, since state 2 represents the state where the first symbol
(p:b) of the expression lc L:S rc has been recognized. 

T38    /<= table with right context
           p + m @
           b 0 m @
           -------
        1: 2 1 1 1
        2: 2 3 1 1
        3: 2 1 0 1

It is instructive to compare table T38 with both table T35 (for a => rule) and table T36b (for a <= rule). 

A3.5 Compiling rules with a left context
This section gives step-by-step examples of how to apply the general procedure given in section A3.2 for
compiling rules into state tables to rules with only a left context. In the exposition of the following examples,
phrases such as "part 4" or "step 4a" refer to the numbered subparts of section A3.2. 

(1) Compiling a => rule with a left context

In this section our example rule states that the correspondence p:b occurs following m+. For example, 

LR:  am+pa  am+pa  ab+pa
SR:  am0ba  am0pa  ab0pa

According to the diagnostic questions in part 3, these correspondences indicate that p is not always realized as
b after m+ (p:p also occurs after m+), but that m+ is the only environment in which p:b is allowed. Therefore
posit a => rule: 

R39     p:b => m +:0 ___

To compile rule R39, first (step 4a) make a list of the column headers: 

        m + p @
        m 0 b @

Next (step 4b), add rows and fill in the cells to recognize the sequence m:m +:0 p:b: 

           m + p @



           m 0 b @
           -------
        1  2      
        2    3    
        3      1 

Next (step 4c), mark state 1 as a final state. Also, every state traversed up to and including the state where p:b
is recognized is marked as a final state. Since there is no right context, there are no more states after that point. 

           m + p @
           m 0 b @
           -------
        1: 2      
        2:   3    
        3:     1 

Next (step 4d) fill in the rest of the p:b column with zeros, because the p:b correspondence cannot succeed
until the entire left context has been recognized: 

           m + p @
           m 0 b @
           -------
        1: 2   0  
        2:   3 0  
        3:     1 

Finally (step 4e), all remaining cells are successful transitions for this rule and can be filled in with transitions
back to the initial state (state 1), with the exception of cells that meet the conditions of backlooping (part 8).
Specifically, the cells in column m:m for states 2 and 3 must make a transition back to state 2, since state 2
represents the state where the first symbol (m:m) of the expression lc L:S rc has been recognized. Now table
T39 will work correctly with input forms such as amm+pa and am+m+pa. 

T39  => table with left context
           m + p @
           m 0 b @
           -------
        1: 2 1 0 1
        2: 2 3 0 1
        3: 2 1 1 1

(2) Compiling a <= rule with a left context

Now suppose that the p:b correspondence is found in these forms: 

LR:  am+pa  ab+pa  ab+pa
SR:  am0ba  ab0pa  ab0ba

According to the questions in part 3, these correspondences indicate that p is always realized as b after m+, but
m+ is not the only environment in which p:b is allowed (it also occurs after b+). Therefore, posit a <= rule: 

R40     p:b <= m +:0 ___

To compile rule R40, first (step 4a) make a list of the column headers, including p:@: 

        m + p p @
        m 0 b @ @

Due to the presence of p:b, p:@ means all other feasible pairs with a lexical p. In other words, it represents
p:¬b. 

Next (step 5b), add rows and fill in the cells to recognize the sequence m:m +:0 p:@. When the final symbol
of the sequence is reached (p:@), the cell is filled with zero, indicating failure. 



           m + p p @
           m 0 b @ @
           ---------
        1  2        
        2    3      
        3        0 

Next (step 5c), mark every state as final: 

           m + p p @
           m 0 b @ @
           ---------
        1: 2        
        2:   3      
        3:       0 

Finally (step 5d), all remaining cells are successful transitions for this rule, and can be filled in with transitions
back to the initial state (state 1), with the exception of cells that meet the conditions of backlooping (part 8).
Specifically, the cells in column m:m for states 2 and 3 must make a transition back to state 2, since state 2
represents the state where the first symbol (m:m) of the expression lc L:S rc has been recognized. Now table
4 will work correctly with input forms such as amm+pa and am+m+pa. 

T40   <= table with left context
           m + p p @
           m 0 b @ @
           ---------
        1: 2 1 1 1 1
        2: 2 3 1 1 1
        3: 2 1 1 0 1

(3) Compiling a <=> rule with a left context

Now suppose that the p:b correspondence is found only in forms like these: 

LR:  am+pa  ab+pa
SR:  am0ba  ab0pa

According to the questions in part 3, these correspondences indicate that p is always realized as b after m+, and
m+ is the only environment in which p:b is allowed. Therefore, posit a <=> rule: 

R41     p:b <=> m +:0 ___

As is explained in part 6 of section A3.2, a <=> rule can be compiled as two separate state tables, one for the
<= rule and one for the => rule. This is what has been done to produce state tables T39 and T40 above.
Alternatively, a <=> rule can be compiled as a single table. To do this (see part 6), first construct the column
headers following the instructions in step 5a: 

        m + p p @
        m 0 b @ @

Next perform steps 5b through 5d to construct the <= part of the rule: 

           m + p p @
           m 0 b @ @
           ---------
        1: 2 1   1 1
        2: 2 3   1 1
        3: 2 1   0 1

Now perform steps 4b through 4e to add the => part of the rule. Since rule R41 has no right context, no new
states need to be added. Simply fill in the column for p:b. Notice that in states 1 and 2 the p:b column must be
filled with zeros just as it is in rule R39. If we encounter p:@ in state 3, then we fail; if we encounter p:b, then



we succeed. 

T41   <=> table with left context
           m + p p @
           m 0 b @ @
           ---------
        1: 2 1 0 1 1
        2: 2 3 0 1 1
        3: 2 1 1 0 1

(4) Compiling a /<= rule with a left context

The fourth rule type, the /<= rule, disallows the correspondence in the specified environment. For example,
rule R42 prohibits p:b m:m +:0. 

R42       p:b /<= m +:0 ___

To compile rule R42 to a state table, follow the steps in part 7. First (step 7a), make a list of the column
headers needed to recognize p:b and the environment plus @:@: 

        m + p @
        m 0 b @

Next (step 7b), add rows (states) and fill in the cells with transitions to recognize the sequence m:m +:0 p:b.
When the final symbol of the sequence is reached (p:b), the cell is filled with zero, indicating failure. 

           m + p @
           m 0 b @
           -------
        1  2      
        2    3    
        3      0 

Next (step 7c), mark every state as final: 

           m + p @
           m 0 b @
           -------
        1: 2      
        2:   3    
        3:     0 

Finally (step 7d), all remaining cells denote successful transitions and are filled in with ones with the exception
of cells that meet the conditions of backlooping (part 8). Specifically, the cells in column m:m for states 2 and 3
must make a transition back to state 2, since state 2 represents the state where the first symbol (m:m) of the
expression lc L:S rc has been recognized. 

T42   /<= table with left context
           m + p @
           m 0 b @
           -------
        1: 2 1 1 1
        2: 2 3 1 1
        3: 2 1 0 1

A3.6 Compiling rules with both left and right contexts
This section gives step-by-step examples of how to apply the general procedure given in section A3.2 for
compiling rules into state tables to rules with both a left and right context. In the exposition of the following
examples, phrases such as "part 4" or "step 4a" refer to the numbered subparts of section A3.2. 



(1) Compiling a => rule with left and right contexts

The example rule used in this section states that the correspondence s:z occurs intervocalically. For example, 

LR:  sasa  sasa
SR:  saza  sasa

According to the diagnostic questions in part 3, these correspondences indicate that s is not always realized as
z between vowels (s:s also occurs between vowels), but that between vowels is the only environment in
which s:z is allowed. Therefore, posit a => rule: 

R43     s:z => V ___ V

To compile rule R43 to a state table, follow the steps in part 4: 

T43   => table with left and right contexts
           V s @
           V z @
           -----
        1: 2 0 1
        2: 2 3 1
        3. 2 0 0

While rule R43 contains the correspondence V:V twice, table T43 has only one V:V column header. The single
V:V header serves for both instances of the correspondence in the environment. Having two identical column
headers in a table will result in an error. (See also section A3.8 on using subsets in state tables.) 

Notice that states 1 and 2 are final, while state 3 is nonfinal. Also note carefully that accounting for
backlooping requires the transition in state 2 in the V:V column to remain in state 2. This is necessary to allow
the correct recognition of words with consecutive vowels, for instance saasa. Less obvious is that when V:V
is recognized in state 3 the FST must return to state 2 rather than the expected state 1. This is necessary to
allow the rule to apply more than once in the same word where the environments overlap. For example,
consider these forms: 

LR:  asasa
SR:  azaza

In this example, the second a serves both as the right context of the first s:z correspondence and as the left
context of the second s:z correspondence. Therefore, when it is first recognized in state 3 of the table, a
transition must be made back to state 2 so that the rule can apply again. 

(2) Compiling a <= rule with left and right contexts

Now suppose that the s:z correspondence is found in these forms: 

LR:  sasa  sasa
SR:  saza  zaza

According to the questions in part 3, these correspondences indicate that s is always realized as z between
vowels, but between vowels is not the only environment in which s:z is allowed (it also occurs
word-initially). Therefore, posit a <= rule: 

R44     s:z <= V ___ V

To compile rule R44, follow the steps in part 5: 

T44     <= table with left and right contexts
           V s s @
           V z @ @
           -------
        1: 2 1 1 1



        2: 2 1 3 1
        3: 0 1 1 1

To account for backlooping, state 2 must have a 2 in the V:V column, parallel to table T43. But unlike table
T43, state 3 must have a 0 in the V:V column, not a 2. This is because rule R44 is a <= rule and must disallow
the sequence V:V s:@ V:V. However, table T44 still correctly handles lexical forms such as asasa because
only states 1 and 2 are used. 

(3) Compiling a <=> rule with left and right contexts

Now suppose that the s:z correspondence is found only in an intervocalic position and s:s never is: 

LR:  sasa
SR:  saza

According to the questions in part 3, these correspondences indicate that s is always realized as z between
vowels, and between vowels is the only environment in which s:z is allowed. Therefore, posit a <=> rule: 

R45     s:z <=> V ___ V

To compile rule R45, follow the steps in part 6: 

T45     <=> table with left and right contexts
           V s s @
           V z @ @
           -------
        1: 2 0 1 1
        2: 2 4 3 1
        3: 0 0 1 1
        4. 2 0 0 0

Rows 1 through 3 constitute the <= part of the rule (compare rule R44), and rows 1, 2, and 4 constitute the =>
part of the rule (compare rule R43). 

(4) Compiling a /<= rule with left and right contexts

The fourth rule type, the /<= rule, disallows the correspondence in the specified environment. For example,
rule R46 prohibits V:V s:z V:V. 

R46       s:z /<= V ___ V

To compile rule R46 to a state table, follow the steps in part 7: 

T46     /<= table with left and right contexts
           V s @
           V z @
           -----
        1: 2 1 1
        2: 2 3 1
        3: 0 1 1

A3.7 Compiling insertion rules
The procedure for compiling two-level rules into state tables is slightly different for rules that insert characters.
Compiling a => insertion rule is the same as described in the previous sections, but compiling a <= rule
requires a different strategy. We will demonstrate the procedure for handling insertion rules with an example
from the Hanunoo language of the Philippines. In Hanunoo, the consonant h is inserted to break up a vowel
cluster. This occurs, for instance, when the suffix i is added to a root that ends with a consonant; compare the
following forms (Schane 1973:54). (Note that the character ? is used here to represent glottal stop.) 

      ROOT             ROOT+i



      ----             ------
      ?unum  `six'     ?unumi     `make it six'
      ?usa   `one'     ?usahi     `make it one'

In the following two-level representations, the inserted h is represented as corresponding to a lexical NULL
symbol (zero): 

LR: ?unum+i   ?usa+0i
SR: ?unum0i   ?usa0hi

The => rule for h-insertion is written as expected: 

R47     h-insertion
        0:h => V +:0 ___ V

and is compiled into a state table in the usual way: 

T47     h-insertion
           V + 0 @
           V 0 h @
           -------
        1: 2 1 0 1
        2: 2 3 0 1
        3: 2 1 4 1
        4. 2 0 0 0

Constructing the <= table, however, is not as straightforward. Following the general procedure for compiling
<= rules to tables, we might expect to construct a the <= table using the column headers 0:h and 0:@, where
0:@ is intended to specify 0:¬h (that is, a lexical 0 corresponding to anything except a surface h): 

R48     h-insertion
        0:h <= V +:0 ___ V

T48     h-insertion
           V + 0 0 @
           V 0 h @ @
           ---------
        1: 2 1 1 1 1
        2: 2 3 1 1 1
        3: 2 1 1 4 1
        4: 0 1 1 1 1

Unfortunately, if we submit the lexical input form ?usa+i to rules R47 and R48, both the correct result
?usahi and the incorrect result ?usai will be returned. Why didn't rule R48, the <= rule, force the insertion
of h as expected? The answer is in the meaning of the column header 0:@. What we really want the <= rule to
do is to recognize the absence of an inserted h in the specified environment and then to fail, that is, to prohibit
the sequence V +:0 V. In effect this means that the table would have to recognize the correspondence 0:0 as
an instance of the column header 0:@. However, 0:0 is not a feasible pair (and indeed never could be); thus
the column header 0:@ cannot specify 0:0. As a matter of fact, if there are no other insertion correspondences
in the description, PC-KIMMO will report an error when it tries to interpret table T48, since there would be no
feasible pairs that would match the 0:@ column header. 

The answer to writing a table that makes h-insertion obligatory (that is, the effect of a <= rule) is that it is
necessary only to disallow the sequence V +:0 V. This can be easily done with a /<= rule of this form: 

R49     h-insertion
        0:0 /<= V +:0 ___ V

This rule must be understood in a special way. Although it follows the general syntax of two-level rules
(correspondence, operator, environment), it departs from the normal meaning of two-level rules in that its
correspondence part, namely 0:0, is not a feasible pair. However, its intended meaning is clear when it is
compared to the corresponding => rule (see the rule in the header line in table T47). It simply means that



something must be inserted where the environment line is located. The => rule provides the h, which is
inserted at this point. The table that expresses rule R49 looks like this: 

T49     h-insertion
           V + @
           V 0 @
           -----
        1: 2 1 1
        2: 2 3 1
        3: 0 1 1

Now it is obvious that the two rules can be combined as a single <=> rule. 

R50     h-insertion
        0:h <=> V +:0 ___ V

T50     h-insertion
           V + 0 @
           V 0 h @
           -------
        1: 2 1 0 1
        2: 2 3 0 1
        3: 0 1 4 1
        4. 2 0 0 0

A3.8 Using subsets in state tables
Section A1.4 introduced the use of subsets in two-level rules. This section discusses their use in state tables.
Assume that a two-level description contains these subsets (see section A4.3 on subset declarations): 

   SUBSET D      t d s
   SUBSET P      c j S
   SUBSET Vhf    i e

In section A1.4 a rule using these subsets was introduced, repeated here as rule R51. 

R51     Palatalization
        D:P => ___ Vhf

Rule R51 states that the alveolar consonants in subset D may be realized as the palatalized consonants in subset
P when they occur preceding the high, front vowels in subset Vhf. Specifically, we want the subset
correspondence D:P to stand for the feasible pairs t:c, d:j, and s:S. Translating rule R51 into a state table is
straightforward: 

T51     Palatalization
           D Vhf @
           P Vhf @
           -------
        1: 2  1  1
        2. 0  1  0

However, a two-level description containing table T51 will produce no correct results unless the feasible pairs
t:c, d:j, and s:S are declared explicitly. The pairs must appear as column headers in a table somewhere in
the description. This is typically done by constructing a table specifically for the purpose of declaring special
correspondences. For example, the following table declares the feasible pairs that we want for the column
header D:P: 

T52     Palatalization correspondences
           t d s @
           c j S @
           -------
        1: 1 1 1 1



Now the D:P column header in table T51 will recognize all and only the pairs declared in table T52. Similarly,
the feasible pairs that Vhf:Vhf stands for (that is, i:i and e:e) must be declared somewhere in the
description. Since in this case the pairs are default correspondences, they will typically be included in the table
with all the other default correspondences. 

A3.9 Overlapping column headers and specificity
Using subsets in rules often leads to a situation where a state table has column headers that potentially overlap.
In such a case, unexpected results may occur. For example, consider this rule, which states that t:c occurs
between any vowel and i: 

R53       t:c => V ___ i

A first attempt at writing a state table for rule R53 might look like this: 

T53        V t i @
           V c i @
           -------
        1: 2 0 1 1
        2: 2 3 1 1
        3. 0 0 1 0

Given the lexical form mati, table T53 will correctly produce the surface form maci. But given the form miti,
it will fail to produce the expected result mici. This is because of the interaction of the column headers V:V and
i:i. Because the feasible pair i:i is an instance of V:V, we might expect that the first i in the input form miti
would match the V:V column header and cause a successful transition to state 2. This is not the case. For each
table in a PC-KIMMO description, the entire set of feasible pairs must be partitioned among the column
headers with no overlap. Each feasible pair belongs to one and only one column header. When PC-KIMMO
interprets the column headers of a table, it scans the list of all the feasible pairs and assigns each one to a
column header. If a feasible pair matches more than one column header, it assigns it to the most specific one,
where the specificity of a column header is defined as the number of feasible pairs that matches it. In order to
see exactly how the feasible pairs are assigned to the column headers of a rule, use the show rule command
(see section 4.5.9). 

Thus in table T53 the feasible pair i:i potentially matches both the column headers V:V and i:i; but because
i:i is more specific than V:V, the pair i:i is assigned to the column header i:i. This means that the column
header V:V stands for all the feasible pairs of vowels except i:i. Thus the input pair i:i matches only the
column header i:i. To work correctly, table T53 must allow i:i to be an instance of V:V in the left context by
placing a 2 in states 1 and 2 under the i:i header. Note also that the order of the columns has no effect on
which column header an input pair is matched to. Table T53a reflects these changes. 

T53a       V t i @
           V c i @
           -------
        1: 2 0 2 1
        2: 2 3 2 1
        3. 0 0 2 0

Now consider a description that contains a subset Vrd for rounded vowels and a subset Vhi for high vowels: 

   SUBSET Vrd  o u
   SUBSET Vhi  i e o u

Notice that the Vhi subset properly includes the Vrd subset. Assume that the description contains the following
rule: 

R54     t:c => Vrd ___ Vhi

We first write a state table for rule R54 like this: 

T54        Vrd t Vhi @



           Vrd c Vhi @
           -----------
        1:  2  0  1  1
        2:  2  3  1  1
        3.  0  0  1  0

But the feasible pairs o:o and u:u, which match both the Vrd:Vrd and Vhi:Vhi column headers, must belong
to the Vrd:Vrd column, since it is more specific. Thus the Vhi column represents only the pairs i:i and e:e.
This means that a lexical input form such as utu will not produce the expected surface form ucu, because the
second u will always match Vrd, not Vhi. This problem is fixed by including u:u and o:o as column headers
in table T54a: 

T54a       Vrd t Vhi u o @
           Vrd c Vhi u o @
           ---------------
        1:  2  0  1  2 2 1
        2:  2  3  1  2 2 1
        3.  0  0  1  2 2 0

The solution, then, in cases of overlapping column headers is to explicitly include as headers in the table the
feasible pairs that belong to both headers. 

It is possible to construct a state table in which a feasible pair matches multiple column headers that have the
same specificity value, making it impossible to uniquely assign the pair to a column. This constitutes an
incorrectly written state table. When the rules file containing such a state table is loaded, a warning message is
issued alerting the user that two columns have the same specificity. If the user proceeds to analyze forms with
the incorrectly written table, a pair will be assigned (arbitrarily) to the leftmost column that it matches. Correct
results cannot be assured. 

A3.10 Expressing word boundary environments
Consider a phonological rule that states that stops are devoiced when they occur in word-final position. For
example, 

LR:  mabab
SR:  mabap

Assume these subsets for voiced stops (B) and voiceless stops (P): 

   SUBSET B   b d g
   SUBSET P   p t k

Two-level rules use the BOUNDARY symbol (#) to indicate word boundary: 

R55     Devoicing
        B:P <=> ___ #

The corresponding state table is written with #:# as the column header representing word boundary. Note that
a boundary symbol used in a column header can only correspond to another boundary symbol; that is,
correspondences such as #:0 are illegal. 

T55     Devoicing
           B B # @
           P @ # @
           -------
        1: 3 2 1 1
        2: 3 2 0 1
        3. 0 0 1 0

Rules and tables that refer to an initial word boundary are written in a similar way. Here is a rule for
word-initial spirantization. 



R56     Spirantization
        p:f <=> # ___ V

T56     Spirantization
           # p p V @ 
           # f @ V @ 
           ---------
        1: 2 0 1 1 1
        2: 1 4 3 1 1
        3: 1 0 1 0 1
        4. 0 0 0 1 0

(Notice that since the first symbol of lc L:S rc is initial word boundary, backlooping is irrelevant.) 

A3.11 Expressing complex environments in state tables
Section A1.6 discussed the notational conventions used to express complex environments in two-level rules.
Those rules are repeated here with instructions on how to express them in state tables. 

As an example we will use a vowel reduction rule. It states that a vowel followed by some number of
consonants followed by stress (indicated by ') is reduced to schwa (ê). For example, 

LR:   bab'a   bamb'a
SR:   bêb'a   bêmb'a

In rule R57 we treat the case where there is exactly one or two intervening consonants. Parentheses indicate
that the second consonant is optional. 

R57     V:ê => ___ C(C)'

In table T57, the second, optional consonant is implemented in state 3. The table succeeds when it recognizes
the stress, either in state 3 after finding one consonant, or in state 4 after finding another consonant. 

T57     Vowel Reduction
           V C ' @
           ê C ' @
           -------
        1: 2 1 1 1
        2. 0 3 0 0
        3. 0 4 1 0
        4. 0 0 1 0

Rule R58 and table T58 specify either zero, one, or two consonants. 

R58     Vowel Reduction
     V:ê => ___ (C)(C)'

T58     Vowel Reduction
           V C ' @
           ê C ' @
           -------
        1: 2 1 1 1
        2. 0 3 1 0
        3. 0 4 1 0
        4. 0 0 1 0

The only difference from table T57 is found in state 2 of table T58, where it is allowed to encounter the stress
immediately after the V:ê correspondence. 

In rule R59 the asterisk indicates zero or more instances of C. 

R59     Vowel Reduction



     V:ê => ___ C*'

Table T59 succeeds in state 2 either by immediately finding stress or by repeating state 2 to find consonants
until stress is reached. 

T59     Vowel Reduction
           V C ' @
           ê C ' @
           -------
        1: 2 1 1 1
        2. 0 2 1 0

Rule R60 specifies one or more consonants. 

R60     Vowel Reduction
        V:ê => ___ CC*'

R60     Vowel Reduction
           V C ' @
           ê C ' @
           -------
        1: 2 1 1 1
        2. 0 3 0 0
        3. 0 3 1 0

Here state 2 requires that at least one consonant be found. Then state 3 functions like state 2 of the previous
example to repeat consonants until stress is found. 

Section A1.6 discussed multiple environments in two-level rules. In this section the state tables for those rules
are provided. The example used here is a vowel lengthening rule. It states that the correspondence a:ä (short
and long a) occurs in two distinct environments: when it is stressed (tonic lengthening) or when it occurs in the
syllable preceding stress (pretonic lengthening). For example, 

LR:  ladab'ar
SR:  ladäb'är

First, the tonic and pretonic lengthening rules and tables are written as separate rules: 

R61     Pretonic Lengthening
        a:ä => ___ C'

T61     Pretonic Lengthening
           a C ' @
           ä C ' @
           -------
        1: 2 1 1 1
        2. 0 3 0 0
        3. 0 0 1 0

R62     Tonic Lengthening
        a:ä => ' ___

T62     Tonic Lengthening
           ' a @
           ' ä @
           -----
        1: 2 0 1
        2: 2 1 1

Note that in state 2 the 2 under the stress header is due to backlooping, even though we do not expect to have
two stress marks in succession (see section A3.4). 

As discussed in section A1.6, rules R61 and R62 are contradictory; they both claim to specify the only



environment in which a:ä is allowed. They must be combined into a single rule, rule R63, which is expressed
as state table T63. 

R63     Pretonic and Tonic Lengthening
        a:ä => [ ___ C'| ' ___ ]

T63     Pretonic and Tonic Lengthening
           a C ' @
           ä C ' @
           -------
        1: 2 1 4 1
        2. 0 3 0 0
        3. 0 0 4 0
        4: 1 1 4 1

There is one key difference between table T63, and tables T61 and T62. This is the change in state 3 where
stress now makes a transition to state 4 rather than back to state 1. This is necessary because stress (which is in
the right context of rule R61) is the first symbol of the left context of rule R62. (Note that in state 4 in the
stress column the transition back to state 4 is due to backlooping.) 

Rules R64 and R65 and tables T64 and T65 express the same lengthening rules, only using the <= operator. 

R64     Pretonic Lengthening
        a:ä <= ___ C'

T64     Pretonic Lengthening
           a a C ' @
           ä @ C ' @
           ---------
        1: 1 2 1 1 1
        2: 1 2 3 1 1
        3: 1 2 1 0 1

R65     Tonic Lengthening
        a:ä <= ' ___

T65     Tonic Lengthening
           ' a a @
           ' ä @ @
           -------
        1: 2 1 1 1
        2: 2 1 0 1

In table T64 under the a:@ header, there are transitions back to state 2 in both state 2 and state 3. This is due to
backlooping. 

Rules R64 and R65, being <= rules, do not conflict, since each allows the a:ä correspondence in
environments other than its own. Nevertheless, if the analyst so chooses, they can be combined into one table: 

R66     Pretonic and Tonic Lengthening
        a:ä <= [ ___ C'| ' ___ ]

T66     Pretonic and Tonic Lengthening
           a a C ' @
           ä @ C ' @
           ---------
        1: 1 3 1 2 1
        2: 1 0 1 2 1
        3: 1 3 4 2 1
        4: 1 3 1 0 1

A3.12 Expressing two-level environments



Section A1.7 discussed the use of two-level environments in phonological rules. The two rules developed in
that section to account for Nasal Assimilation and Stop Voicing are repeated here with their state tables (assume
that a default N:n correspondence is declared elsewhere in the description): 

R67     Nasal Assimilation
        N:m <=> ___ p:

T67     Nasal Assimilation
           N N p @
           m @ @ @
           -------
        1: 3 2 1 1
        2: 3 2 0 1
        3. 0 0 1 0

R68     Stop Voicing
        p:b <=> :m ___

T68     Stop Voicing
           @ p p @
           m b @ @
           -------
        1: 2 0 1 1
        2: 1 1 0 1

These rules relate the lexical sequence Np to the surface sequence mb. Note carefully that the symbol p: in rule
R67 is expressed as the column header p:@ in table T67, and the symbol :m in rule R68 is expressed as the
column header @:m in table T68. (See section A1.7 on overspecification in rules of this type.) 

Now assume that the lexical sequence Nb is realized as the surface sequence mb (that is, both lexical Np and Nb
are realized as surface mb). This shows that the N:m correspondence is found before a surface b that realizes
either a lexical p or b. The distribution of the p:b correspondence is the same. Rule R67 then must be revised
as follows: 

R67a    Nasal Assimilation
        N:m <=> ___ :b

T67a    Nasal Assimilation
           N N @ @
           m @ b @
           -------
        1: 3 2 1 1
        2: 3 1 0 1
        3. 0 0 1 0

Unfortunately, if a description containing tables T67a and T68 is given the lexical input form aNpa, it produces
not only the expected surface form amba but also the incorrect form anpa. The reason for this failure is similar
to the problem of overspecification discussed in section A1.7. Notice the symmetrical, interlocking relationship
between rules R67a and R68. The environment of each rule is the surface character of the correspondence part
of the other rule; that is, the environment of rule R67a is :b, which is the surface character of the p:b
correspondence of rule R68, and the environment of R68 is :m, which is the surface character of the N:m
correspondence of rule R67a. This means, with respect to the lexical form aNpa, that rule R67a does not
require N to be realized as m before a p that is realized as anything other than b, and rule R68 does not require p
to be realized as b after an N that is realized as anything other than m. Thus the form aNpa can pass through the
two rules vacuously. Assuming that the analyst is correct in positing surface environments for these two rules,
the only way to fix the problem is to prohibit the sequence N:n p:p. This can be done either by adding the rule
N:n /<= ___ p, or by incorporating this prohibition into one of the existing tables. For example, we can
revise table T67a as follows: 

T67b    Nasal Assimilation
           N N @ p @
           m @ b p @
           ---------



        1: 3 2 1 1 1
        2: 3 1 0 0 1
        3. 0 0 1 0 0

By including the column header p:p (or perhaps @:p) in table T67b, we can recognize N:@ p:p and force
failure. Now the lexical form aNpa will match only the surface form amba. (Alternatively, table T68 could be
revised to include the column header N:n and fail when the sequence N:n p:@ is recognized.) 

A3.13 Rule conflicts

The two main types of rule conflicts are the => (or environment) conflict and the <= (or realization) conflict
(Dalrymple and others 1987:25). The => conflict arises when two conditions are met: (1) two => rules have
the same correspondence on the left side of the rule, but (2) they have different environments on the right side.
(This type of conflict has already been discussed in section A1.6.) For example, 

R69     Intervocalic Voicing
        p:b => V ___ V

R70     Voicing after nasal
        p:b => m ___

Since the rule operator => means that the correspondence can occur only in the specified environment, rules
R69 and R70 contradict each other. The simplest resolution of the conflict is to combine the two rules into one
rule with a disjunctive environment: 

R71     Voicing
        p:b => [ V ___ V | m ___  ]

The state table for rule R71 looks like this: 

T71     Voicing
           V m p @
           V m b @
           -------
        1: 2 4 0 1
        2: 2 4 3 1
        3. 2 0 0 0
        4: 2 4 1 1

where states 1, 2, and 3 correspond to the V ___ V part of rule R71 and states 1 and 4 correspond to the m
___ part. 

Now assume that rules R69 and R70 have been initially written as <=> rules: 

R72     Intervocalic Voicing
        p:b <=> V ___ V

R73     Voicing after nasal
        p:b <=> m ___

Their state tables look like this: 

T72     Intervocalic Voicing
           V p p @
           V b @ @
           -------
        1: 2 0 1 1
        2: 2 4 3 1
        3: 0 0 1 1
        4. 2 0 0 0

T73     Voicing after nasal



           m p p @
           m b @ @
           -------
        1: 2 0 1 1
        2: 2 1 0 1

A description containing tables T72 and T73 will not work, because the => sides of the rules conflict, just like
rules R69 and R70. There are two ways to resolve the conflict between rules R72 and R73. First, the rules can
be separated into their <= parts and => parts, and the => parts combined as above: 

R74     Intervocalic Voicing
        p:b <= V ___ V

R75     Voicing after nasal
        p:b <= m ___

R76     Voicing
        p:b => [ V ___ V | m ___  ]

State tables are easily written for rules R74 and R75 (not included here), and table T71 encodes rule R76 (same
as rule R71). 

The second way to resolve the conflict between rules R72 and R73 is to modify the environment of each table
to allow the environment of the other. Tables T72 and T73 are revised as T72a and T73a. 

T72a    Intervocalic Voicing
           V p p m @
           V b @ m @
           ---------
        1: 2 0 1 5 1
        2: 2 4 3 5 1
        3: 0 0 1 5 1
        4. 2 0 0 0 0
        5: 2 1 1 5 1

T73a     Voicing after nasal
           m p p V @
           m b @ V @
           ---------
        1: 2 0 1 3 1
        2: 2 1 0 3 1
        3: 2 1 1 3 1

Table T72a contains the column header m:m from table T73, and table T73a contains the column header V:V
from table T72. This enables the sequence m:m p:b to pass vacuously through table T72a and the sequence
V:V p:b V:V to pass vacuously through table T73a. 

It should also be noted that tables T72a and T73a can be combined into a single table that expresses the
disjunctive rule p:b <=> [ V ___ V | m ___ ]. This can be done by dispensing with table T73a and
placing a zero in the cell at the intersection of row 5 and the p:@ column of table T72a. However, when dealing
with very complex rules with perhaps more than one conflict, it may be clearer to keep the rules separate as
shown above. 

The second type of rule conflict is the <= (or realization) conflict. It arises when two conditions are met: (1) the
correspondence parts of two <= rules have the same lexical character but different surface realizations of it, and
(2) the environment of one rule is subsumed by the environment of the other rule. For example, to account for
the following correspondences, we posit rules R7 and r78 (where Z stands for a voiced alveopalatal grooved
fricative): 

LR:  asa  isi
SR:  aza  iZi

R77     Intervocalic Voicing



        s:z <= V ___ V

R78     Palatalization
        s:Z <= i ___ i

These rules meet both conditions of a <= conflict. First, the lexical characters of their correspondence parts are
the same (namely s), while the surface characters are different (z and Z). Second, because i is a member of the
subset V, the environment of rule R77 subsumes the environment of rule R78; that is, i ___ i is a specific
instance of the more general environment V ___ V. The state tables for rules R77 and R78 are as follows: 

T77     Intervocalic Voicing
           V s s @
           V z @ @
           -------
        1: 2 1 1 1
        2: 2 1 3 1
        3: 0 1 1 1

T78     Palatalization
           i s s @
           i Z @ @
           -------
        1: 2 1 1 1
        2: 2 1 3 1
        3: 0 1 1 1

Given the lexical input form asa, only rule R77 will apply and return the correct surface form aza. Given the
lexical form isi, we want rule R78 to apply and produce the surface form iZi, but in fact the rules fail to
return any result. This is because rule R77 disallows s:Z between vowels (including i's), while rule R78
disallows s:z between i's. Also, the rules cannot produce the surface form izi, because this contradicts rule
R78, which states that s must be realized as Z. 

In generative phonology this type of conflict is resolved by ordering the specific rule before the general rule, in
this case Palatalization before Voicing. Rule ordering is of course not available in the two-level model. To
resolve a <= conflict in a two-level description, the general rule must be altered to allow (but not require) the
correspondence of the specific rule to occur in its environment. Table T77 must therefore be revised as T77a. 

T77a    Intervocalic Voicing
           V s s s @
           V z @ Z @
           ---------
        1: 2 1 1 1 1
        2: 1 1 3 1 1
        3: 0 1 1 1 1

In table T77 the column header s:@ stands for the set of correspondences s:s and s:Z, but in table T77a the
inclusion of the header s:Z restricts the meaning of s:@ to only s:s. Thus the occurrence of s:Z is not
restricted by table T77a. Now s will be realized as Z in the environment i ___ i because table T77a allows it
and table T78 requires it. 

A3.14 Comments on the use of => rules
The two major rule types, the <= rule and the => rule, have been described informally as the "obligatory" rule
and the "optional" rule. The meaning and use of the obligatory <= rule are fairly straightforward, but the use of
the optional => rule in actual two-level descriptions deserves more comment. There are three ways in which
=> rules are employed. 

First, as the term optional suggests, a => rule is used in cases where two surface characters are truly in free
variation, regardless of morphological or lexical context. For example, in many dialects of American English t
is in free variation with an alveolar flap D when it occurs after a vowel and before an unstressed vowel; for
example, the word writer can be pronounced either [r'aytêr] or [r' ayDêr]. This is expressed by a => rule



such as rule R79 (where the absence of the stress symbol (') indicates no stress). Such rules of free variation
are typically low-level phonetic rules. 

R79     Flapping
        t:D => V ___ V

Second, a => rule may be used in cases where a correspondence is restricted to certain lexical items or classes
of lexical items (for instance, nouns or verbs), or to certain morphological contexts (for instance, nominative
case). For example, English needs a rule for the f:v correspondence in pairs of words such as wife and
wives, leaf and leaves. But this rule is restricted to a very small and arbitrary number of lexical items (it
does not apply to fife, reef, and so on). The simplest solution is to write the f:v rule as a => rule and let it
overgenerate and overrecognize. That is, it will generate and recognize nonwords such as wifes (the plural of
wife) and fives (the plural of fife). For purposes of testing a two-level description, the files of test data
should contain only well-formed words. 

In generative phonology the solution to this problem is to mark the lexical entries of the words wife, leaf,
and so on for a "positive rule exception," which says that only words so marked can undergo the f:v rule. The
lexical component of PC-KIMMO does not allow lexical entries to be so marked for lexical features. However,
the same effect can be produced by introducing a special character (often called a diacritic) in the lexical forms
of exceptional words. This character serves as the "trigger" for certain rules to apply. Thus wife and leaf
could be given the lexical forms wayf* and liyf* while fife and reef would have the lexical forms fayf
and riyf. The f:v rule would then be written like this (where +z stands for the plural morpheme): 

R80     f:v <=> ___ *:0 +:0 z

While this solution works, it has the undesirable effect of positing lexical representations that contain
nonphonological elements. Many linguists would reject such representations on theoretical grounds. (A similar
solution is to posit lexical forms such as wayF and liyF and a rule for F:v. The same linguistic objections
apply.) 

Third, a => rule is used to "clean up" <= rules. This is a nonobvious but very important use of => rules. For
example, assume that a two-level description contains two obligatory rules for lengthening, namely rules R64
and R65 in section A1.6 for pretonic and tonic lengthening. While these rules may express intuitively that
lengthening applies obligatorily in the specified environments, running PC-KIMMO with just these two rules
will result in overgeneration. Because <= rules do not restrict the occurrence of the correspondence in other
environments, rules R64 and R65 will produce forms with the a:ä correspondence in environments where
they do not occur. For example, given the lexical input labad'ar, rules R64 and R65 will return both
labäd'är (correct) and läbäd'är (incorrect). To prevent this type of overgeneration, <= rules must be
accompanied by analogous => rules. Thus when rule R63 is added to the description containing rules R64 and
R65, only correct surface forms will be generated. 

As a practical procedure in developing a two-level description, the user will typically write all the obligatory <=
rules for a given correspondence first. Then to correct the resulting overgeneration, the user must write a single
=> rule for the correspondence; it must contain as a multiple environment (to avoid => conflicts) all the
contexts of the <= rules for the correspondence. 

As another example of the use of => rules as "clean-up" rules, consider again an example used in section A1.6
where the vowel of the ultimate syllable of a word is lengthened unless it is schwa, in which case the vowel of
the penultimate syllable is lengthened (for example, mamän and mamänê). Assume these subsets: 

   SUBSET V     i a u ê
   SUBSET Vlng  ï ä ü

and these special correspondences: 

        Lengthening correspondences
           i a u @
           ï ä ü @
           -------
        1: 1 1 1 1



Following the procedure described above, assume that this is an obligatory process. Here is the <= rule and its
state table: 

R81     Lengthening
        V:Vlng <= ___ C(ê)#

T81     Lengthening
           V    V C ê # @
           Vlng @ C ê # @
           --------------
        1: 1    2 1 1 1 1
        2: 1    2 3 1 1 1
        3: 1    2 1 4 0 1
        4: 1    2 1 1 0 1

Now to prevent the overgeneration of ill-formed surface forms such as mämän and mämänê, this "clean-up" =>
rule must be included: 

R82     Lengthening
        V:Vlng => ___ C(ê)#

T82     Lengthening
           V    C ê # @
           Vlng C ê #&@
           ------------
        1: 2    1 1 1 1
        2. 0    3 0 0 0
        3. 0    0 4 1 0
        4. 0    0 0 1 0

A3.15 Comments on the use of morpheme boundaries
In standard generative phonology, a phonological rule that applies to the segments XY also applies to X+Y,
where + indicates a morpheme boundary (Chomsky and Halle 1968:364). In other words, a phonological rule
that applies within a morpheme is assumed also to apply across morpheme boundaries. Thus it is not necessary
to include optional morpheme boundaries in rules. Clearly two-level rules can also be written without optional
morpheme boundaries; but state tables must explicitly include a morpheme boundary column even if they are
optional at each point in the input string. To make a morpheme boundary completely optional in a table, simply
loop back to the current state in each state of the table. For example, here is a rule and table for intervocalic
voicing: 

R83   Intervocalic voicing
      s:z lt;=gt; V ___ V

T83   Intervocalic voicing
        V  s  s  +  @
        V  z  @  0  @
        -------------
    1:  2  0  1  1  1
    2:  2  4  3  2  1
    3:  0  0  1  3  1
    4.  2  0  0  4  0

(Notice that rows 1--3 encode the <= part of the rule and rows 1--2 and 4 encode the => part.) This table will
allow a morpheme boundary at any point in the lexical form, for instance sa+za and saz+a. 

It should be noted that generative descriptions do use explicit morpheme boundaries in rules; in such cases the
rule only applies in the presence of the boundary. Often this is done to limit the rule's application to a specific
morpheme by actually "spelling out" the morpheme in the rule's environment. This trick is necessary also in
PC-KIMMO, since PC-KIMMO does not allow the application of rules to be limited to certain lexical items by
means of lexical features. For example, the English prefix in+ has the allomorphs il+ and ir+ in words such
as illegal and irregular (compare intolerable). But we do not want to write a rule that changes n to l or



r everywhere (compare unlawful, inlet, enlarge, unreal). Therefore we write the => rule and table for
n:l to limit the application of the rule to the lexical form in+. (The rule could be made even more specific by
requiring the prefix to be word-initial.) 

R84    n:l => i ___ +l

T84     i  n  +  l  @
        i  l  0  l  @
        -------------
    1:  2  1  1  1  1
    2:  2  3  1  1  1
    3.  0  0  4  0  0
    5.  0  0  0  1  0

A3.16 Expressing phonotactic constraints
In section A3.4 we recommended that tables should be written without incorporating phonotactic constraints in
them. As a matter of practice, this approach may result in less time spent debugging a set of rules. But more
importantly, a linguistic description should distinguish between phonological rules (correspondences between
lexical and surface characters) and phonotactic constraints (restrictions on permitted sequences of characters).
For instance, just as the phonological description of English includes allophonic rules stating the distribution of
aspirated and unaspirated voiceless stops, it also includes phonotactic constraints such as restrictions on
possible word-initial consonant clusters. 

As an example of how to encode phonotactic constraints as state tables, consider a language that allows words
of the phonological shape CV(C)CV(C). That is, a word minimally consists of two open (CV) syllables, each
of which can optionally be closed by a consonant. Possible words are baba, bamba, bambam, and so on. The
following state table restricts all words to this pattern: 

T85 CV(C)CV(C) pattern
       # C V @
       # @ @ @
       -------
    1: 2 1 1 1
    2. 0 3 0 2
    3. 0 0 4 3
    4. 0 5 0 4
    5. 0 6 7 5
    6. 0 0 7 6
    7. 1 8 0 7
    8. 1 0 0 8

By using the column headers C:@ and V:@ rather than C:C and V:V, table T85 is a statement of phonotactic
constraints on lexical forms, not surface forms. Phonological rules such as deletions could result in surface
forms that do not conform to the lexical-level phonotactic pattern. To allow for diacritics such as stress ('), the
@:@ column in table T85 ignores all symbols that are not either consonants or vowels. Thus a word such as
bab'a is allowed by the table. 

As another example, we will attempt to describe the constraints on initial consonant clusters in English. First
we will define the following subsets for voiceless stops (P), liquids (L), and nasals (N): 

   SUBSET P  p t k c
   SUBSET L  l r
   SUBSET N  m n

We want to allow word-initial clusters of the following types: sP, sL, sN, sPL, and PL. These constraints on
clusters at the lexical level are encoded in table T86. 

T86 Word-initial consonant cluster constraints
       # s P L N V C @
       # @ @ @ @ @ @ @
       ---------------



    1: 2 1 1 1 1 1 1 1
    2: 1 3 4 5 5 1 5 2
    3. 0 0 4 5 5 1 0 3
    4. 0 0 0 5 0 1 0 4
    5. 0 0 0 0 0 1 0 5

Table T86 will allow the lexical forms of words such as spit, slit, snip, prick, click, split, string,
and so on, but disallow sbit, slpit, spmit, mlik, and so on. Unfortunately, it will also allow nonoccurring
words such as srit, tlick, and sklit (though scl does occur in words of Greek origin, for instance
sclera). To disallow these, another table can encode refinements to the above table: 

T87 More initial consonant cluster constraints
       # s t k l r N V C @
       # @ @ @ @ @ @ @ @ @
       -------------------
    1: 2 1 1 1 1 1 1 1 1 1
    2: 1 3 4 1 1 1 1 1 1 2
    3. 0 0 4 4 1 0 1 1 1 3
    4. 0 0 0 0 0 1 0 1 0 4

(Note that tables T86 and T87 disallow the clusters sph and sv, which occur in words of foreign origin such
as sphere and svelte.) 
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This section contains instructions on how to write the rules file for the PC-KIMMO program (a more detailed
specification of the rules file is found in section 4.7.1). We will develop a sample rules file for a set of
hypothetical data. 

The general structure of the rules file is a list of declarations composed of a keyword followed by data. The set
of valid keywords in a rules file includes COMMENT, ALPHABET, NULL, ANY, BOUNDARY, SUBSET,
RULE, and END. The COMMENT, SUBSET and RULE declarations are optional and also can be used more
than once in a rules file. The END declaration is also optional, but can only be used once. 

The COMMENT declaration (new in PC-KIMMO version 2) sets the comment character used in the rules file,
lexicon files, and grammar file. The COMMENT declaration can only be used in the rules file, not in the
lexicon or grammar file. The COMMENT declaration is optional. If it is not used, the comment character is set
to ; (semicolon) as a default. 

The ALPHABET declaration must either occur first in the file or follow one or more COMMENT declarations



only. The other declarations can appear in any order. The COMMENT, NULL, ANY, BOUNDARY, and
SUBSET declarations can even be interspersed among the rules. However, these declarations must appear
before any rule that uses them or an error will result. 

To begin creating a rules file, use your text editor or word processing program to create a file with the
extension .RUL (for example, SAMPLE.RUL). When you save the file to disk, be sure to save it as plain text
(ASCII). We also recommend that you use an editor that handles column blocks; this makes manipulating state
tables much easier. Type the basic skeleton of a PC-KIMMO rules file as shown in figure A8 (a template of a
rules file is also available in the file RULES.RUL on the PC-KIMMO release diskette): 

Figure A8 The skeleton of a PC-KIMMO rules file

    COMMENT
    ALPHABET
    NULL
    ANY
    BOUNDARY
    SUBSET
    RULE
    END

Comments can be added to the rules file that are ignored by PC-KIMMO. The default comment delimiter
character is semicolon (;), but can be changed by using the COMMENT declaration. Anything on a line
following a semicolon is considered a comment and is ignored. Extra spaces and blank lines are also ignored. 

A4.1 The ALPHABET
The rules file must first declare the alphabet. This is the entire set of symbols (characters), both lexical and
surface, used by the rules and lexicon. The ALPHABET declaration must either occur first in the file or follow
one or more COMMENT declarations only. It is followed by any number of lines of symbols, each separated
by at least one space. For example, 

    ALPHABET
      p t k b d g m n ng ç j s S z Z h l r w y
     i e a o u ï ë ä ö ü
     + '

The alphabet can consist of any alphanumeric characters, including those available in the extended character set
on IBM PC-compatible computers. Uppercase and lowercase are considered distinct characters. Nonalphabetic
characters such as $, &, !, ', #, and + may also be used. In the above alphabet, + indicates a morpheme
boundary and ' indicates stress. In this section, the examples printed in typewriter style use only those
characters available on IBM PC compatible computers. 

An alphabetic symbol can also be a multigraph, that is, a sequence of two or more characters. The individual
characters composing a multigraph do not necessarily have to also be declared as alphabetic characters. For
example, an alphabet could include the characters s and z and the multigraph sz%, but not include % as an
alphabetic character. Note that a multigraph cannot also be interpreted as a sequence of the individual characters
that comprise it. For example, if you declare t, h, and th as alphabetic symbols, then the th in a word such as
rathole will match only the digraph th, not the sequence t plus h. 

A4.2 NULL, ANY, and BOUNDARY symbols
Next, the NULL (empty or zero) symbol is declared. Any character not already in the alphabet can be chosen,
but for obvious reasons 0 (zero) is typically used. The NULL symbol is used for deletions, for instance h:0,
and insertions, for instance 0:h. The NULL symbol is declared by including this line: 

    NULL 0

Next, the ANY ("wildcard") symbol is declared. Again, any character not already in the alphabet can be
chosen; in this book we use @ ("at" sign). The ANY symbol is declared by including this line: 



    ANY @

Next, the BOUNDARY (word boundary) symbol is declared. Again, any character not already in the alphabet
can be chosen; in this book we use # (crosshatch or pound sign). The BOUNDARY symbol is declared by
including this line: 

    BOUNDARY #

A4.3 Subsets
Next in the rules file the subsets, if any, are declared. A subset declaration is composed of the keyword
SUBSET followed by a subset name followed by a list of subset characters. A subset name can be any
alphanumeric string (one or more characters, no spaces) so long as it is unique; that is, it cannot be a single
character already declared in the alphabet. Uppercase characters are useful for subset names because they are
usually distinct from their lowercase equivalents. All characters defined as belonging to a subset must also be
in the complete alphabet. Subsets are declared by including lines such as these: 

   SUBSET C       p t k b d g m n ng ç j s S z Z h l r w y
   SUBSET V       i e a o u
   SUBSET Vlng    ï ë ä ö ü
   SUBSET Cvd     b d g m n ng z l r w y
   SUBSET Oalv    t d s z
   SUBSET Opal    ç j S Z
   SUBSET Ovd     b d g z
   SUBSET Ovl     p t k s

A4.4 Rules
The rest of the rules file consists of the rules. A rule declaration is composed of the keyword RULE followed
by the rule name, number of states, number of columns, and the state table itself. The rule name is enclosed in
a pair of identical delimiter characters such as double quotes. The rule name has no effect on the operation of
the table. It actually can contain any information, but by convention we use it for the name and the two-level
notation of the rule. It is also useful to include a sequence number for each rule, as rules are referred to by
number in some of the diagnostic displays for rule debugging. Notice that the horizontal and vertical lines
printed in the tables shown in this chapter are not present in an actual rules file. 

By common convention, the first rules listed are the tables of default correspondences, though these
correspondences can be listed anywhere in the file. For the sake of consistency, it is best to place all the default
correspondences in these tables even if they also occur in other tables. The possible redundancy has no effect
on the operation of the tables. Tables of default correspondences for the alphabet given in section A4.1 look
like this: 

RULE "1 Consonant defaults" 1 17
           p t k b d g m n ng s z h l r w y @
           p t k b d g m n ng s z h l r w y @
        1: 1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1

RULE "2 Vowels and other defaults" 1 8
           i e a o u ' + @
           i e a o u ' 0 @
        1: 1 1 1 1 1 1 1 1

The two tables could be combined into one; consonants and vowels have been separated here for increased
readability. Notice that the morpheme boundary symbol (+) is deleted by default; that is, it has no surface
realization other than 0. 

After the tables of default correspondences come the rules for special correspondences. The rules developed
below account for examples such as these: 



LR:   s'ati   s'adi   bab'at   bab'ad
SR:   s'açi   s'äji   bab'at   bab'ät

These rules account for Palatalization: 

RULE "3 Palatalization correspondences" 1 5
           t d s z @
           ç j S Z @
        1: 1 1 1 1 1

RULE "4 Palatalization, Oalv:Opal  lt;= gt; ___i" 3 4
           Oalv Oalv i @
           Opal  @   i @
        1:  3    2   1 1
        2:  3    2   0 1
        3.  0    0   1 0

Rule 4 is a palatalization rule that states that the alveolar consonants are realized as palatalized consonants
before i. Because rule 4 uses subsets, the feasible pairs represented by the correspondence Oalv:Opal must
be explicitly declared. Rule 3 contains these correspondences which are relevant only to rule 4. The special
correspondences from all the rules in the description could be combined into one table (or they could even be
combined with the tables of default correspondences). However, for readability and to make it easier to modify
and debug the rules file, we recommend that a separate table of special correspondences be kept with each rule
that uses subsets. 

Rules 5 and 6 state that vowels are lengthened when they are stressed (that is, follow ') and precede a lexical
voiced consonant (that is, a member of the subset Cvd). 

RULE "5 Lengthening correspondences" 1 6
           a e i o u @
           ä ë ï ö ü @
        1: 1 1 1 1 1 1

RULE "6 Vowel Lengthening, V:Vlng  lt;= gt; '___Cvd:" 4 5
           ' V    V Cvd @
           ' Vlng @  @  @
        1: 2 0    1  1  1
        2: 2 4    3  1  1
        3: 2 1    1  0  1
        4. 0 0    0  1  0

The environment of rule 6 contains the correspondence Cvd:@ rather than Cvd:Cvd because of rules 7 and 8,
which devoice obstruents word finally. 

RULE "7 Devoicing correspondences" 1 5
           b d g z @
           p t k s @
        1: 1 1 1 1 1

RULE "8 Final Devoicing, Ovd:Ovl lt;= gt; ___#" 3 4
           Ovd Ovd # @
           Ovl  @  # @
        1:  3   2  1 1
        2:  3   2  0 1
        3.  0   0  1 0

The rules file optionally ends with a line containing only the word END. Any material in the file after this line
is ignored by PC-KIMMO. 

END

A4.5 Example of a rules file



As a ready model for the format of a rules file, the example developed above is repeated in its entirety in figure
A9. This file is found on the PC-KIMMO release diskette in the SAMPLE subdirectory. 

Figure A9 Sample rules file

ALPHABET
  p t k b d g m n ng ç j s S z Z h l r w y
  i e a o u ï ë ä ö ü
  + '
NULL 0
ANY @
BOUNDARY #
SUBSET C       p t k b d g m n ng ç j s S z Z h l r w y
SUBSET V       i e a o u
SUBSET Vlng    ï ë ä ö ü
SUBSET Cvd     b d g m n ng z l r w y
SUBSET Oalv    t d s z
SUBSET Opal    ç j S Z
SUBSET Ovd     b d g z
SUBSET Ovl     p t k s
END

RULE "1 Consonant defaults" 1 17
           p t k b d g m n ng s z h l r w y @
           p t k b d g m n ng s z h l r w y @
        1: 1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1

RULE "2 Vowels and other defaults" 1 8
           i e a o u ' + @
           i e a o u ' 0 @
        1: 1 1 1 1 1 1 1 1

RULE "3 Palatalization correspondences" 1 5
           t d s z @
           ç j S Z @
        1: 1 1 1 1 1

RULE "4 Palatalization, Oalv:Opal  lt;= gt; ___i" 3 4
           Oalv Oalv i @
           Opal  @   i @
        1:  3    2   1 1
        2:  3    2   0 1
        3.  0    0   1 0

RULE "5 Lengthening correspondences" 1 6
           a e i o u @
           ä ë ï ö ü @
        1: 1 1 1 1 1 1

RULE "6 Vowel Lengthening, V:Vlng  lt;= gt; '___Cvd:" 4 5
           ' V    V Cvd @
           ' Vlng @  @  @
        1: 2 0    1  1  1
        2: 2 4    3  1  1
        3: 2 1    1  0  1
        4. 0 0    0  1  0

RULE "7 Devoicing correspondences" 1 5
           b d g z @
           p t k s @
        1: 1 1 1 1 1

RULE "8 Final Devoicing, Ovd:Ovl lt;= gt; ___#" 3 4
           Ovd Ovd # @
           Ovl  @  # @



        1:  3   2  1 1
        2:  3   2  0 1
        3.  0   0  1 0

END
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