Chapter 4
Reference M anual

Last modified November 22, 1995

4.1 Introduction and technical specifications
4.2 Installing PC-KIMMO

4.3 Starting PC-KIMMO

4.4 Interacting with the user interface

4.5 Command reference by function

4.6 Alphabetic list of commands

4.7 File formats

4.8 Trace formats

4.9 Algorithms

4.10 M essages

4.1 Introduction and technical specifications

PC-KIMMO is anew implementation for microcomputers of a program dubbed KIMMO &fter its inventor
Kimmo Koskenniemi. Koskenniemi's two-level model was designed to generate words (see Koskenniemi
1983). Work on PC-KIMMO was begun in 1985, following the specifications of the LISP implementation of
Koskenniemi's model described in Karttunen 1983. The aim was to develop a version of the two-level
processor that would run on an IBM PC compatible computer and that would include an environment for
testing and debugging a linguistic description. The PC-KIMMO program is actually a shell program that serves
as an interactive user interface to the primitive PC-KIMMO functions. These functions are available as a source
code library that can be included in a program written by the user.

The coding has been done in the C language by David Smith, Stephen McConnel, and Femke Hemels under
the direction of Gary Simons and under the auspices of the Summer Institute of Linguistics. Every effort has
been made to maintain portability. PC-KIMMO presently runs under four computing platforms:

e |BM PC and compatibles running MS-DOS or PC-DOS version 3.3 or higher and a 386 or higher
CPU

e |IBM PC and compatibles running Windows 3.0 or higher
e Apple Macintosh system 6.0 or higher
e UNIX System V (SCO UNIX V/386 and A/UX) and 4.2 BSD UNIX

The Windows and Macintosh versions use the same command-line interface as the DOS and UNIX versions,
rather than using the graphical user interface one might expect. Also, the DOS and UNIX versions support a
few commands which are not available in the Windows and Macintosh versions.

The release diskettes for the PC and Macintosh versions contain the executable PC-KIMMO program,
examples of language descriptions, and the source code library for the primitive PC-KIMMO functions. The
UNIX diskettes contain the complete source code which the user must compile.

The PC-KIMMO executable program and source code are copyrighted but are made freely available to the
general public under the condition that they not be resold or used for commercial purposes.

The English description referred to in this chapter described in chapter 3.

4.2 Installing PC-KIMMO

4.2.1 Installing the MS-DOS version
4.2.2 Installing the Windows version
4.2.3 Installing the Macintosh version

4.2.4 Installing the UNI X version

The following instructions describe how to install the various versions of PC-KIMMO.

4.2.1 Installing the MS-DOS version of PC-KIMMO

If your computer has floppy disks only, make aworking copy of the PC-KIMMO release diskette that came
with this book. Store the original in a safe place. Insert your working copy of the PC-KIMMO diskette in drive
A of your machine.

If your computer has ahard disk, usethe INSTALL.BAT procedure on the PC-KIMMO diskette to install the
system on your hard disk. To do this, insert the PC-KIMMO diskette in one of your disk drives. Type A: (or
whatever the name of the driveis) in order to log control to that disk. Now type install followed by the name
of the hard disk on which you want to install PC-KIMMO (for instance, install C:). Thiswill createa
subdirectory called PCKIMMO on your hard disk and copy the contents of the release diskette (with al its
subdirectories) into it.

Whether you are using afloppy or hard disk system, the operating system's PATH variable must be set to
include the directory where the PC-KIMMO program is found. The AUTOEXEC.BAT file on your boot disk
should contain a path statement that specifies all the disks and directories that contain programs. On afloppy
disk system, the path statement should include as a minimum the root directory of drive A, for instance,
PATH=A:\. On ahard disk system, add ;C:\PCKIMMO to the end of the path statement. For the path statement
to become effective, you must reboot the computer. (If you want to change the path variable without changing
the AUTOEXEC.BAT file and rebooting, enter a path command directly at the operating system prompt.)

In order to use PC-KIMMO's edit command, you must set the operating system environment variable
EDITOR to the name of your text editing program. Thisis done by including in the AUTOEXEC.BAT filea
line of thisform:

SET EDITOR=filespec where filespec specifies the path and full file name of your editing program. For
example, if your editor's file name is EMACS.EXE and isfound in the UTIL subdirectory directly under the
root directory, include thisline: SET EDITOR=\UTIL\EMACS.EXE

4.2.2 Installing the Windows version of PC-KIMMO

Follow the instructions above on installing the MS-DOS version from diskettes. Then run Windows and create
aprogram item for PC-KIMMO.

4.2.3 Installing the M acintosh version of PC-KIMMO

Create a new folder named PC-KIMMO (or a name of your choice) on your hard disk and copy into it all the
files and folders from the rel ease diskette.

If you get an "Out of memory" error when you try to load alarge lexicon, then you need to increase the amount
of memory allocated to PC-KIMMO. To do this, click once on itsicon or file name to select it, choose Get Info

on the File menu, and type alarger number into the memory box. For example, Englex (the description of
English described in chapter 3) requires amemory allocation of at least 3000KB.

4.2.4 Installing the UNI X version of PC-KIMMO
4.3 Starting PC-KIMMO

4.3.1 Starting the MS-DOS version

4.3.2 Starting the Windows version

4.3.3 Starting the Macintosh version

4.3.4 Starting the UNI X version

4.3.5 Starting PC-KIMMO with command line arguments
4.3.6 Starting PC-KIMMO with default settings

The following instructions describe how to start the various versions of PC-KIMMO.

4.3.1 Starting the MS-DOS version of PC-KIMMO

To start the MS-DOS version of PC-KIMMO on aPC, first be sure that DOS is logged onto the drive where
PC-KIMMO islocated. To change to the subdirectory that contains the English example, enter cd \english on a
floppy disk system, or cd \pckimmo\english on a hard disk system. Now type pckimmo (if your PATH

variable is not correctly set to include the PC-KIMMO subdirectory, type ..\pckimmo). When PC-KIMMO has
successfully started up, you will see a version message and the PC-KIMMO command line prompt.

4.3.2 Starting the Windows version of PC-KIMMO

To start the Windows version of PC-KIMMO on a PC, double-click on the PC-KIMMO program icon.

4.3.3 Starting the Macintosh version of PC-KIMMO

To start PC-KIMMO on a Macintosh, double-click on the PC-KIMMO program icon.

4.3.4 Starting the UNI X version of PC-KIMMO

4.3.5 Starting PC-KIMMO with command line arguments

The MS-DOS and UNIX versions of PC-KIMMO can aso be started with optional command line arguments.
The format of the command lineis:

pckimmo [-r rulefile] [-] lexiconfile] [-g grammarfile] [-t takefile]

The options are used as follows:

e The-r option specifiesarulesfile to be loaded. It is equivalent to issuing the load rules command
from the program prompt.

e The-l option specifies alexicon fileto be loaded. It is equivalent to issuing the load lexicon
command from the program prompt. It must be used with the -r option.

e The-s option specifies a synthesis-lexicon file to be loaded. It is equivalent to issuing the load
synthesis-lexicon command from the program prompt. It must be used with the -r option.

e The-goption specifies agrammar file to be loaded. It is equivalent to issuing the load grammar
command from the program prompt.

e The-t option specifiesa"take" file from which PC-KIMMO reads and executes commands. It is
equivalent to issuing the take command from the program prompt.

4.3.6 Starting PC-KIMM O with default settings

On start-up, PC-KIMMO automatically tries to load user-defined settings from a "take" file named
PCKIMMO.TAK or PC-KIMMO.TAK. Command line arguments are executed after loading the default "take"
file.

4.4 Interacting with the user interface

4.4.1 Entering commands
4.4.2 Getting on-line help
4.4.3 The MS-DOS interface
4.4.4 The Windows interface
4.4.5 The Macintosh interface

4.4.6 The UNIX interface

4.4.1 Entering commands

The user interacts with PC-KIMMO by entering commands at the command line prompt, in much the same
way that one enters commands at the operating system prompt. Caseisignored for all command keywords.

Keywords can be shortened to any unambiguous form. For instance, load rules, load rul, load r, and loar are
all acceptable. Typing just | is ambiguous for the commands load, log, and list. However, because load is
such afrequently used command, it takes special precedence over the other commands beginning with |, which
means that typing just | will execute only the load command.

4.4.2 Getting on-line help
There are several waysto get on-line help:
e Toget alist of the available commands, type ?.
e To get information on what these commands do, type help.
e To get the specific syntax and use for acommand, type help plus a specific command name.

e Toget alist of the keywords that can go with a particular command, type the command name
followed by ?. Note however that if the command does not take a keyword it will be executed; for
instance typing new ? will execute the new command.

4.4.3 The MS-DOS interface

Screen scrolling can be halted by pressing Ctrl-S(that is, hold down the Ctrl (Control) key and pressS); any
key will resume scrolling.

Processing can be interrupted by pressing Cirl-C. Note that this action does not abort PC-KIMMO, but returns
it to the program prompt. It is useful for stopping along screen display (such as atrace) or afile processing
command.

Pressing Ctrl-P causes screen output to be echoed to the printer. Pressing Ctrl-P again stops printer echoing.

4.4.4 The Windows interface

The PC-KIMMO window can be moved, resized, and scrolled in the usual way (see your Windows
documentation).

Anything in the PC-KIMMO window can be copied and pasted. Thisis done by using the mouse to highlight
material on the screen and then executing the Copy and Paste commands available either on the Edit menu. For
example, acommand can be copied and pasted after the command line prompt.

Screen scrolling can be halted by pressing Ctrl-S(that is, hold down the Ctrl (Control) key and press S); press
Ctrl-Q to resume scrolling.

Pressing Ctrl-C is equivaent to the exit command on the Windows File menu.

4.4.5 The Macintosh interface

The PC-KIMMO program window can be moved, resized, and scrolled in the usual way (see your Macintosh
documentation).

The File, Edit, Font, and Size menus provide standard Macintosh commands. No PC-KIMMO commands
(except quitting the program) can be done using menus. Note that the Font and Size commands affect the entire
contents of the window.

Anything in the PC-KIMMO program window can be copied and pasted. This is done by using the mouse to
highlight materia on the screen and then executing the Copy and Paste commands available either on the Edit
menu or with the Command keys (see your Macintosh documentation). For example, acommand can be

copied and pasted after the command line prompt.
The command line can be edited using the mouse, the arrow keys, and the Del ete key.

See section 4.5.18 for information on Macintosh directory paths and the CD command.

To interrupt an operation (such as along trace display or afile reading/writing function), press Command-.
(that is, hold down the Command key and press the period key). Thisis the same as Ctrl-C on the PC version.

To exit PC-KIMMO, either press Command-Q or choose Quit from the File menu. Y ou can also enter either of

the PC-KIMMO commands exit or quit. (Ctrl-D also works.)

4.4.6 The UNIX interface
4.5 Command reference by function

4.5.1 Get help

4.5.2 Load rules, lexicon, and grammar

4.5.3 Clear rules, lexicon, and grammar

4.5.4 Take commands from a file

4.5.5 List rule names, feasible pairs, or sublexicon names
4.5.6 Set system options

4.5.7 Turn logging on or off

4.5.8 Show system status

4.5.9 Show rule or sublexicon

4.5.10 Generate surface forms from a lexical form

4.5.11 Recognize lexical forms from a surface form
4.5.11A Synthesize surface forms from a morphological form
4.5.12 Compare data from a file

4.5.13 Generate forms from afile

4.5.14 Recognize forms from a file

4.5.14A Synthesize forms from a file

4.5.15 Execute an operating system command

4.5.16 Edit afile

4.5.17 Halt the program
4.5.18 Change directory

The following subsections document each command, arranged by function, of the PC-KIMMO system.
Square brackets in the command line summariesindicate optional elements. The notation {x | y} means either x
or y (but not both). Command keywords and arguments in bol dface are typed literally; for instance, the
command summary set tracing {on | off} meansto type either set tracing on or set tracing off. Command
argumentsin italics are replaced by elements of the specified type; for instance, the command summary show
rule number means to replace number with arule number, such asshow rule 3.

4.5.1 Get help

?
Displaysalist of command names.

help [command-name]

I ssuing the help command with no argument displays alist of commands with a brief description of their

1:: lém %rr]{dl.swi ng the help command with the name of a specific command displays a usage summary for the

command-name ?

Typing acommand name followed by ?, instead of a keyword, displays a message listing the keywords
expected for that command.

4.5.2 Load rules, lexicon, and grammar

Theload command is used to load either rules, alexicon, or aword grammar from afile.
load rules [filespec]

Theload rulesloads a set of rules from the file specified on the command line. The filespec can contain a path;
for example, B:\ENGLISH\ENGLISH.RUL isafully specified path under MS-DOS (see section 4.5.18 for
information on Macintosh directory paths). The default file name extension is .RUL ; thus, the command load
rules english will load the file ENGLISH.RUL. If no file nameis given, the default file name RULES.RUL is
used. The rulesfile must be in the format described later in this chapter (see section 4.7.1).

An error in the format of the rulesfile will cause the program to stop loading the file, erase the rules already
loaded, and report an error message with the line number where the error was encountered. Refer to section
4.10.2 on error messages for more details.

Therulesfile must be loaded before the lexicon and before performing any generation or recognition
operations.

Theload rules command can also be invoked by using the -r command line option when starting up
PC-KIMMO (see section 4.3.6).

load Iexicon [filespec]
Theload lexicon command loads alexicon from the file specified in the command line. The filespec can

contain a path; for example, BAENGLISH\ENGLISH.LEX isafully specified path under MS-DOS (see
section 4.5.18 for information on Macintosh directory paths). The default file name extension is .LEX; thus,

the command load lexicon english will load the file ENGLISH.LEX. If no file nameis given, the default file
name LEXICON.LEX isused. The lexicon file must be in the format described later in this chapter (see section
4.7.2).

An error in the format of the lexicon file will cause the program to stop loading the file, erase the parts of the
lexicon already loaded, and report an error message with the line number where the error was encountered.
Refer to section 4.10.3 on error messages for more details.

The rulesfile must be loaded before the lexicon. The lexicon file must be loaded before using the recognizer
function. The generator function can be used without loading alexicon and indeed makes no use of alexicon.

Theload lexicon command can aso be invoked by using the -I command line option when starting up
PC-KIMMO (see section 4.3.6).

load synthesis-lexicon [filespec]

Theload synthesis-lexicon command loads a synthesis-lexicon from the file specified in the command line.
Thefilespec can contain a path; for example, BAENGLISH\ENGLISH.LEX isafully specified path under
MS-DOS (see section 4.5.18 for information on Macintosh directory paths). The default file name extension is
.LEX; thus, the command |oad synthesis-lexicon english will load the file ENGLISH.LEX. If no file nameis
given, the default file name LEXICON.LEX isused. The synthesis-lexicon file must be in the format
described later in this chapter (see section 4.7.2).

An error in the format of the synthesis-lexicon file will cause the program to stop loading the file, erase the
parts of the synthesis-lexicon already |oaded, and report an error message with the line number where the error
was encountered. Refer to section 4.10.3 on error messages for more details.

The rules file must be loaded before the synthesis-lexicon. The synthesis-lexicon file must be loaded before
using the synthesizer function. The generator function can be used without loading a synthesis-lexicon and
indeed makes no use of a synthesis-lexicon.

Theload synthesis-lexicon command can aso be invoked by using the -| command line option when starting
up PC-KIMMO (see section 4.3.6).

load grammar [filespec]

Theload grammar command loads a grammar from the file specified in the command line. The filespec can
contain a path; for example, BAENGLISH\ENGLISH.RUL isafully specified path under MS-DOS (see
section 4.5.18 for information on Macintosh directory paths). The default file name extension is .GRM; thus,
the command load grammar english will load the file ENGLISH.GRM. If no file nameis given, the default
file name GRAMMAR.GRM isused. The grammar file must be in the format described later in this chapter
(see section 4.7.3).

An error in the format of the grammar file will cause the program to stop loading the file, erase the parts of the
grammar aready loaded, and report an error message with the line number where the error was encountered.
Refer to section 4.10.4 on error messages for more details.

The rules and lexicon files must be loaded before the grammar. Use of agrammar file is optional, even when
using the recognizer function. The generator function can be used without loading a grammar and indeed
makes no use of agrammar file.

Theload grammar command can also be invoked by using the -g command line option when starting up
PC-KIMMO (see section 4.3.6).

4.5.3 Clear rules, lexicon, and grammar

clear

The clear command erases from memory the rules, lexicon, synthesis-lexicon, and grammar currently |oaded.
Strictly speaking it is not needed, since the load rules command erases all existing rules, the load lexicon
command erases any existing lexicon, the load synthesis-lexicon command erases any existing
synthesis-lexicon, and the load grammar command erases any existing grammar.

4.5.4 Take commands from a file

take [filespec]

Thetake command causes PC-KIMMO to read and execute commands from afile. Thefilespec can contain a
path; for example, B:\\KIMMO\ENGLISH.TAK isafully specified path under MS-DOS (see section 4.5.18
for information on Macintosh directory paths). The take command recognizes the default file name
PCKIMMO.TAK and the default file extension .TAK. The command file can itself issue the take command to
call another command file down to adepth of threefiles. That is, the user can specify acommand file <filel>

that contains the command take <file2>, that itsalf contains the command take <file3>. It would be an error
for <file3> to contain atake command.

On start-up, PC-KIMMO automatically triesto load default settings and commands from a "take" file named
PCKIMMO.TAK or PC-KIMMO.TAK.

A command file can aso be specified by using the -t command line option when starting up PC-KIMMO (see

section 4.3.6). Note that a command file cannot submit forms to the special generator and recognizer prompts
(see sections 4.5.10 and 4.5.11).

4.5.5 List rule names, feasible pairs, or sublexicon names

Thelist command is used to display either rule names, feasible pairs, or sublexicon names.
list pairs

Thelist pairs command displays on the screen the set of feasible pairs specified by the set of rules currently
turned on.

list rules

Thelist rules command displays on the screen the current state of the rulesthat are loaded. The display
consists of each rule by number, an indication of whether the rule is on or off, and the rule name from the
header lines of its state table in the rulesfile.

list lexicon

Thelist lexicon command displays on the screen the names of the sublexicons of the lexicon currently in use.

4.5.6 Set system options

The set command is used to turn on or off various processing options including several related only to using a
word grammar. The save command saves the current settingsto a"take" file.

4.5.6.1 General options
set alignment {on | off}

The set alignment command turns alignment display mode on or off. If alignment mode is on, then the results
of the recognizir function are displayed on the screen in avertically aligned format: the first (top line) displays
the lexical form of each morpheme; the second line displays sublexicon names; and the third line displays
glosses. If dignment mode is off, the results are displayed the usual way. The default setting is off.

set limit {on | off}

Theset limit command limits the result of a generation or recognition function to one form. That is, if limitis
set off, then PC-KIMMO backtracks after finding a correct result so that it can find every possible result. With
limit set on, after finding one correct result form PC-KIMMO does not backtrack to try to find more results.
The default setting is off.

set rules{on |off} {list-of-numbers|all}

The set rules command allows you to turn selected rules on or off for testing or debugging purposes. When a
ruleisturned off, it is completely ignored in the recognition or generation of forms. One effect of thisisto
cause the recal culation of feasible pairs, considering only the rules which remain on. Use thelist pairs
command to see the set of feasible pairs currently in use.

On the command line, you can specify the action on or off followed by alist of rule numbers or the keyword
all (in which case all rules are turned on or off). Specific rules are turned on or off by listing their rule numbers
(shown by the list rules command), each separated by a space.

set timing {on | off}

The set timing command uses the computer's system clock to time the execution of generation and recognition
operations. It displays the result as the number of seconds the operation lasted. It applies to these commands:
generate, recognize, file compare generate, file compare recognize, file compare pairs, file generate, and
file recognize. The default setting is off.

set tracing {on | off |level}

The set tracing command allows you turn the tracing mechanism on or off. When tracing is on, details of the
analysis of aform are displayed on the screen during generation or recognition operations. If logging (see
section 4.5.7) is on, the trace will also be written to the log file. Tracing is operative for these commands:
generate, recognize, file compare generate, file compare recognize, file compare pairs, file generate, and
file recognize. The default setting is off.

The amount of detail shown in the trace display is set by the tracing level. The level argument to the set
tracing command can range from 0 to 3, where O isno tracing at all and 3 isthe most detailed level of tracing.

I ssuing the command set tracing off setstracing to level 0. Issuing the command set tracing on setstracing to
level 2. At leve 1, noinformation is given asto which feasible pair is being tried or the condition of the rules
(that is, what state each automaton isin). Both the generator and recognizer report each RESULT line, with all
NULL symbols being explicitly printed. The recognizer also displays lexicon information; that is, it reports
which sublexicon is being entered or backed out of. At level 2, the feasible pairs being tried and the state of
each rule (automaton) is displayed. The recognizer displays lexicon information asit does at level 1. At level 3,
more detailed information is given on which feasible pairs are being tried and the state of each rule. For more
information on the format of the trace display, see section 4.5.8 on trace formats.

set verbose {on | off}

The set verbose command affects the amount of information displayed on the screen during afile comparison
operation (either generate, recognize, or pairs, see section 4.5.12). If verbose is set off, afile comparison
operation displays only adot for each form correctly analyzed, though any exceptional results will cause the
complete form and warning messages to be displayed. If verbose is set on, afile comparison operation
displays the compl ete contents of the file (minus comments) plus confirmation and warning messages. The
default setting is off.

set warnings{on |off}

The set war nings command turns warning mode on or off. If warning mode is on, then any warning
messages that occur while loading afile or while processing aform are displayed on the screen. If warning

mode is off, then no warning messages are displayed. The default setting is on. (See section 4.10 for an
explanation of the difference between errors and warnings.)

4.5.6.2 Optionsrelated to use of a word grammar
set ambiguities number

The set ambiguities command limits the number of analyses produced by the word grammar to the specified
number. The default setting is 10. Note that this command assumes that aword grammar is loaded (see section
4.5.2) and that the grammar option is set to on (see section 4.5.6.2).

set failures{on | off}

The set failures command turns grammar failure mode on or off. When grammar failure mode ison, the
partial results of forms that fail the word grammar are displayed. A form may fail the word grammar either by
failing the feature constraints or by failing the constituent structure rules. In the latter case, a partial tree (bush)
will be displayed. When grammar failure mode is off, forms that fail the word grammar are filtered out and no
results for them are displayed. The default setting is off. Note that this command assumes that aword grammar
isloaded (see section 4.5.2) and that the grammar option is set to on (see section 4.5.6.2).

set features{top |all |off}
set features {full |flat}

The command set features controls the display of feature structures returned by the recognizer when aword
grammar is used. Whenfeaturesis set totop, the feature structure for only the top node of thetreeis
displayed. Whenfeaturesis set to all, the feature structures for all nodes of the tree. are displayed. And when
featuresis set to off, no feature structures are displayed. The default setting is top.

When features is set to full, the feature structures are displayed in avertical, indented format; when features
is set toflat, the feature structures are displayed as alinear string. The default setting is full.

Note that this command assumes that aword grammar is loaded (see section 4.5.2) and that the grammar
option is set to on (see section 4.5.6.2).

set grammar {on |off}

The command set grammar turns the word grammar on or off. When grammar is on, then results from the
lexicon are passed to the word grammar for parsing. When grammar is off, then the results from the lexicon
are displayed without using the word grammar. The default setting is off, but is automatically turned on when
agrammar isloaded.

set tree{full |flat |indented | off}

The command set tree controls the display of the tree structure returned by the recognizer when aword
grammar is used. Whentree is set tofull, afull branching treeis displayed. When tree is set toflat, alinear
bracketed string is displayed.When tree is set toindented, a north-west oriented indented tree is displayed.
And whentreeis set to off, no tree structure is displayed. The default setting is full. Note that this command
assumes that aword grammar is loaded (see section 4.5.2) and that the grammar option is set to on (see
section 4.5.6.2).

set trim-empty-features{on | off}
The command set trim-empty-features controls the display of features that have empty values. When

trim-empty-features is set to on, empty features are not displayed. When trim-empty-features is set to off,
empty features are displayed. The default setting ison.

set unification {on |off}

The command set unification turns feature unification in the word grammar on or off. When unification is
on, any feature constraints used in conjunction with the grammar rules are used as expected. When unification
is off, the feature constraints are ignored and only the congtitutent structure rules are used. The default setting
ison. Note that this command assumes that aword grammar is loaded (see section 4.5.2) and that the
grammar option is set to on (see section 4.5.6.2).

4.5.6.3 Save settings
save [filespec]
The save command writes the current setting to a"take" file named filespec. If filespec is not specified, the

settings are written to afile named PCKIMMO.TAK in the current directory. On start-up, PC-KIMMO
automatically triesto load default settings from PCKIMMO.TAK (or PC-KIMMO.TAK).

4.5.7 Turn logging on or off

Thelog and close commands are used to turn logging on and off.

log [filespec]

Thelog command turns the logging mechanism on. When logging is on, the information displayed on the
screen during execution of generation or recognition operationsis also written to a disk file whose nameis
specified in the command line. The filespec can contain a path; for example, BAENGLISH\ENGLISH.LOG is
afully specified path under MS-DOS (see section 4.5.18 for information on Macintosh directory paths). If no
file nameisgiven, alog file named PCKIMMO.LOG iswritten to the default directory. If afile name with no
extension is given, alog file with the extension .LOG is written to the default directory. If alog command is
given when alog file is already open, then the open log fileis closed before the new log file is created.
Logging records the processing of these commands: generate}, recognize, file compare generate, file
pomlpar?_lrecognize, file compare pairs, file generate, and file recognize. Tracing displays are also recorded
inalogfile.

close

The close command turns logging off and closesthe log file.

4.5.8 Show system status

The status command is used to display on the screen the status of various system parameters.

status

The status command displays the names of the rules, lexicon and grammar files currently loaded, the name of

thelog file (if logging is on), the comment delimiter character, and the status of the processing options
controlled by the set command. It can aso be invoked with the synonyms show status or show.

4.5.9 Show rule or sublexicon
show rule rule-number

The show rule command first displays the number, on/off status, and name of therule (smilar to thelist rules
command). If theruleisturned on, it then displays each column header of the state table for that rule with the
set of feasible pairsthat it specifies. This command is used primarily for debugging purposes.

show lexicon sublexicon-name

The show lexicon command displays the contents of a sublexicon. It shows each lexical item, its gloss, and its
continuation class. If the continuation class of alexical entry names an alternation, the alternation is expanded
into alist of sublexicon names. Note that this command displays the parts of the lexical entry in the following
order (rather than the order in which they appear in the lexicon file): lexical item, gloss, continuation class.

4.5.10 Generate surface forms from a lexical form
gener ate [lexical-form]

The generate command accepts asinput alexical form and returns one or more surface forms. If no lexical
form argument is given, PC-KIMMO supplies a special generator prompt where forms can be typed in directly
without the generate keyword. Entering a blank line at the generator prompt returns the program to the main
command line prompt.

4.5.11 Recognize lexical forms from a surface form

r ecognize [surface-form]

Therecognize command accepts as input a surface form and returns one or more lexica forms. If no surface
form argument is given, PC-KIMMO supplies a specia recognizer prompt where forms can be typed in
directly without the recognize keyword. Entering a blank line at the recognizer prompt returns the program to
the main command line prompt.

4.5.11A Synthesize surface forms from a mor phological form
r ecognize [mor phological-form]

The synthesi ze command accepts as input a morphological form (a sequence of morpheme glosses separated
by spaces) and returns one or more surface forms. If no morphological form argument is given, PC-KIMMO
supplies a special synthesizer prompt where forms can be typed in directly without the synthesize keyword.
Entering a blank line at the synthesizer prompt returns the program to the main command line prompt.

4.5.12 Compare data from afile

The compare commands compare data prepared by the user to the results of data processed by PC-KIMMO.
The data are contained in files whose formats are described in sections 4.7.4, 4.7.5, and 4.7.6.

[file] compare gener ate [filespec]

The compar e generate command reads lexical forms from afile, submits them to the generator for analysis,
and compares the resulting surface form(s) with the expected results listed in the file. The filespec can contain
apath; for example, BAENGLISH\ENGLISH.GEN isafully specified path under MS-DOS (see section
4.5.18 for information on Macintosh directory paths). A generation comparison file has the default extension
.GEN and the default file name DATA.GEN. The format of the generation comparison fileis described in
section 4.7.4. If aword grammar isin use, the tree option and the featur es option must both be set off.

Results of the comparison are reported according to the setting of the verbose option (see the set verbose
command described in section 4.5.6.1). If verbose is set off, only exceptions (that is, actual results from the
generator that are different from the expected results as specified in thefile) are reported. A dot is displayed on
the screen as each input (lexical) form is processed. If verbose is set on, each group of lexical and surface
formsin the fileis displayed, either with an error message for wrong comparisons or the message OK if the
actual and expected results match exactly.

[file] compar e recognize [filespec]

The compare recognize command reads surface forms from afile, submits them to the recognizer for analysis,
and compares the resulting lexical form(s) with the expected results specified in the file. The filespec can
contain a path; for example, BAENGLISH\ENGLISH.REC isafully specified path under MS-DOS (see
section 4.5.18 for information on Macintosh directory paths). A recognition comparison file has the default
extension .REC and the default file name DATA.REC. The format of the recognition comparison fileis
described in section 4.7.5. If aword grammar isin use, thetree option and the featur es option must both be
Set off.

Results of the comparison are reported according to the setting of the verbose option (see the set verbose
command described in section 4.5.6.1). If verbose is set off, only exceptions (that is, actual results from the
recognizer that are different from the expected results as specified in the file) are reported. A dot is displayed
on the screen as each input (surface) form is processed. If verbose is set on, each group of surface and lexical
formsin the file is displayed, either with an error message for wrong comparisons or the message OK if the
actual and expected results compared identically.

[file] compare pair s [filespec]

The compare pairs command allows lexical:surface pairs of formslisted in the file specified on the command
line to be compared in both directions. The filespec can contain a path; for example,
B:\ENGLISH\ENGLISH.PAI isafully specified path under MS-DOS (see section 4.5.18 for information on
Macintosh directory paths). A pairs comparison file has the default extension .PAI and the default file name
DATA.PAI. Theformat of the pairs comparison fileis described in section 4.7.6. If aword grammar isin use,
thetree option and the features option must both be set off.

PC-KIMMO considers each pair of forms (alexical form followed by its surface form). The lexical formis
input to the generator to produce one or more surface forms. The surface form listed in the file is compared
with the generated surface formsto seeif there is a successful match. The surface form listed in the fileisthen
Input to the recognizer to produce one or more lexical forms. The lexical form listed in the file is compared
with the recognized lexical formsto seeif thereis a successful match.

Results of the comparison are reported according to the setting of the verbose option (see the set verbose
command described in section 4.5.6.1). If verbose is set off, only exceptions (that is, one of the comparisons
failed) arereported. A dot is displayed on the screen as each pair of formsis processed. If verbose is set on,
each pair of lexical and surface formsin the fileis displayed, either with an error message for wrong
comparisons or the message OK if the forms match exactly.

[file] compare synthesize [filespec]

The compar e synthesize command reads morphological forms from afile, submits them to the synthesizer for
analysis, and compares the resulting surface form(s) with the expected results listed in the file. The filespec
can contain a path; for example, BAENGLISH\ENGLISH.SY N isafully specified path under MS-DOS (see
section 4.5.18 for information on Macintosh directory paths). A generation comparison file has the default
extension .SY N and the default file name DATA.SY N. The format of the synthesis comparison fileis
described in section 4.7.6A. A morphological form is a sequence of morpheme glosses separated by spaces.
Results of the comparison are reported according to the setting of the verbose option (see the set verbose
command described in section 4.5.6.1). If verbose is set off, only exceptions (that is, actual results from the
synthesizer that are different from the expected results as specified in the file) are reported. A dot is displayed
on the screen as each input (morphological) form is processed. If verbose is set on, each group of
morphological and surface formsin thefile is displayed, either with an error message for wrong comparisons
or the message OK if the actual and expected results match exactly.

45.13 Generate forms from afile
file gener ate input-filespec [output-filespec]

Thefile generate command reads lexical forms from afile, submits them to the generator for analysis, and
returns each lexical form followed by the resulting surface form(s). The format of the generation input fileis

described in section 4.7.7.

If an output-filespec argument is specified, the results are written to that file; otherwise, the results are
displayed on the screen. The format of the output file created by this command isidentical to acomparison
generation file. The filespec of either file can contain a path; for example, BAENGLISH\ENGLISH.FGisa
fully specified path under MS-DOS (see section 4.5.18 for information on Macintosh directory paths). The
command does not recognize any default file names or extensions.

The verbose option (see the set verbose command described in section 4.5.6.1) has no effect on thefile
generate command.

4.5.14 Recognize forms from afile
file recognize input-filespec [output-filespec]

Thefile recognize command reads surface forms from afile, submits them to the recognizer for analysis, and
returns each surface form followed by the resulting lexical form(s). The format of the recognition input fileis
described in section 4.7.8. If an output-filespec argument is specified, the results are written to that file;
otherwise the results are displayed on the screen. The format of the output file created by thiscommand is
identical to acomparison recognition file. The filespec of either file can contain a path; for example,
B:\ENGLISH\ENGLISH.FR isafully specified path under MS-DOS (see section 4.5.18 for information on
Macintosh directory paths). The command does not recognize any default file names or extensions.

The verbose option (see the set verbose command described in section 4.5.6.1) has no effect on thefile
recognize command.

4.5.14A Synthesize forms from afile
file synthesize input-filespec [output-filespec]

Thefile synthesize command reads morphological forms from afile, submits them to the synthesizer for
analysis, and returns each morphological form followed by the resulting surface form(s). The format of the
synthesisinput file is described in section 4.7.8A. A morphological form is a sequence of morpheme glosses
separated by spaces.

If an output-filespec argument is specified, the results are written to that file; otherwise, the results are
displayed on the screen. The filespec of either file can contain a path; for example,
B:\ENGLISH\ENGLISH.FSisafully specified path under MS-DOS (see section 4.5.18 for information on
Macintosh directory paths). The command does not recognize any default file names or extensions.

The verbose option (see the set verbose command described in section 4.5.6.1) has no effect on thefile
synthesize command.

4.5.15 Execute an operating system command
system [system-command]

The system command allows you to execute an operating system command from within PC-KIMMO. It is
available only for the MS-DOS and UNIX versions of PC-KIMMO. For example, on an IBM PC-compatible
computer, the command system dir will execute the DOS directory command. If no command argument is
given, then PC-KIMMO is pushed into the background and a new system command processor shell is started.
While you arein the shell, you can execute any commands or programs. To leave the shell and return to
PC-KIMMO, type exit. On an IBM PC-compatible computer, the system command will not work unless a
copy of the DOS system file COMMAND.COM isavailable.

The system command hasthe alias! (exclamation point), which does not require a space between it and the

following command. For example, !dir performs the DOS directory command.

4.5.16 Edit a file

edit filespec

Theedit command attempts to edit afile using the editing program specified by the operating system
environment variable EDITOR. It isavailable only for the MS-DOS and UNIX versions of PC-KIMMO. If
this environment variable is not defined, then the command will try to use EDLIN (on a DOS machine) or vi
(onaUNIX machine) to edit thefile. To set the environment variable, include aline such asthisin your
AUTOEXEC.BAT file: SET EDITOR=filespec

wherefil espec specifies the path and full file name of your editing program, for example,
\UTIL\EMACS.EXE. You can use the edit command, for example, to invoke your text editor and modify the
rules or lexicon files. After saving the files and leaving the editor, you must load the files again in order for
PC-KIMMO to utilize the changes.

4.5.17 Halt the program

exit

Theexit command causes PC-KIMMO to exit back to the operating system.
quit

The command quit isthe same as exit.

4.5.18 Change directory

cd pathname

PC-KIMMO considers the directory (folder) where the program file resides to be the current or default
directory. While running PC-KIMMO, it is often necessary to access filesin other directories. The Macintosh
version of PC-KIMMO has a specia command for changing directories called CD. Its command syntax is CD
pathname, where pathname is a concatenation of volume and directory names. The Macintosh uses the colon
as a separator character between directory names in much the same way that MS-DOS uses a\ or backsash
character. There are two types of pathnames: full pathnames and partial pathnames. A full pathname starts with
the name of the root directory (or volume name). For example, afull pathname to the English directory might
look like this:

MyDi sk: PC- KI MO Engl i sh

A partial pathname starts with the name of a directory whose position in the directory tree must be specified
relative to the current directory. A partial pathname always starts with a colon (whereas afull pathname never
does). For example, if the current directory is MyDisk, the partial pathname to specify the English directory is:

: PC- KI MO Engl i sh

Thusif we are running PC-KIMMO while in the MyDisk directory and we want to change to the English
directory, we issue the command:

CD : PC- KI MO Engl i sh

Here are some things to remember when using Macintosh pathnames with the CD command.

Directory names are not case sensitive; if the directory nameis"English”, you can refer to it as
"english" or "ENGLISH".

e A directory name used in aCD command cannot contain a space.

e To changeto the directory below the current one, use apartial pathname; for example CD
:ENGLISH.

e To changeto the directory immediately above the current one, simply issue the command CD :: (two
colons). To go up two directories, type CD ::: (three colons), and so on.

e To changeto adirectory that shares a parent with the current directory, go up to the parent using
colons and then specify the directory names to go down to the sibling directory. For example, if you
arein the English directory and want to change to the Finnish directory type CD ::FINNISH (which
means, go up one directory and then down to the FINNISH directory).

e Itisalso possibleto accessfilesin adirectory other than the current one without changing directories.
This can be done by specifying the file's pathname when it it used in acommand. The pathname
follows the same conventions as described above for the CD command. For example, the command
LOAD RULES :ENGLISH:ENGLISH.RUL will look for the file ENGLISH.RUL in adirectory
named ENGLISH immediately below the current directory.

4.6 Alphabetic list of commands

This section documents each command, arranged alphabetically, of the PC-KIMMO system. Square brackets
in the command line summaries indicate optiona elements. The notation {x |y} means either x or y (but not
both). Command keywords and arguments in bol dface are typed literaly; for instance, the command summary
set tracing {on | off} meansto type either set tracing on or set tracing off. Command argumentsin italics
are replaced by elements of the specified type; for instance, the command summary show r ule number means
to replace number with a rule number, such asshow rule 3.

I' [system-command]

Executes an operating system command or invoke a new command processor shell (same as system).
?

Displaysalist of command names.

cd pathname

Changes default subdirectory. This command is available only for the Macintosh version only.

close

Turnslogging off and closesthe log file.

edit filespec

Editsfilespec using the editing program specified by the operating system environment variable EDITOR.
This command is available only for the MS-DOS and UNIX versions of PC-KIMMO.

exit
Exits PC-KIMMO and returns to the operating system.

[file] compare gener ate [filespec]

Reads |exical formsfrom filespec, submits them to the generator, and compares the resulting surface form(s)
with the expected results listed in fil espec.

[file] compar e recognize [filespec]

Reads surface forms from filespec, submits them to the recognizer, and compares the resulting lexical form(s)
with the expected results listed in fil espec.

[file] compare synthesize [filespec]

Reads morphological forms (a sequence of morpheme glosses separated by spaces) from filespec, submits
them to the synthesizer, and compares the resulting surface form(s) with the expected results listed in fil espec.

[file] compar e pair s [filespec]

Reads pairs of lexical and surface forms from filespec and analyzes them to seeif the surface form can
generated from the lexical form and the lexical form can be recognized from the surface form.

file gener ate input-filespec [output-filespec]

Readsalist of lexical forms from input-filespec, submits them to the generator, and returns each lexical form
followed by the resulting surface form(s).

file recognize input-filespec [output-filespec]

Reads alist of surface forms from input-filespec, submits them to the recognizer, and returns each surface
form followed by the resulting lexical form(s).

file synthesize input-filespec [output-filespec]

Reads alist of morphological forms (a sequence of morpheme glosses separated by spaces) from
input-filespec, submits them to the synthesizer, and returns each morphological form followed by the
resulting surface form(s).

gener ate [lexical-form|

Accepts asinput alexical form and returns one or more surface forms.

help [command-name]

Without acommand name argument, displays alist of commands with abrief explanation of each. With a
command name argument, displays a usage summary for the command.

list lexicon

Displays on the screen the names of the sublexicons of the lexicon currently in use.
list pairs

Displays the set of feasible pairs specified by the set of rules currently turned on.
list rules

Displaysthe current state of the rules that are loaded.

load grammar [filespec]

L oads grammar from filespec.

load Iexicon [filespec]

Loads lexicon from filespec.

load rules [filespec]

Loads rules fromfilespec.

load synthesis-lexicon [filespec]

L oads synthesis-lexicon from filespec.

log [filespec]

Turns the logging mechanism on.

clear

Clearstherules, lexicon, synthesis-lexicon, and grammar currently loaded.
quit

Same asexit.

recognize [surface-form|

Accepts as input a surface form and returns one or more lexical forms.
save [filespec]

Save the current settingsto a "take" file named filespec.

set alignment {on | off}

Turns alignment mode on or off.

set ambiguities number

Limits the number of analyses produced by the word grammar to number.
set failures{on |off}

Turns grammar failure mode on or off.

set features{top |all | off}

set features{full |flat}

Determines how feature structures are displayed.

set grammar {on |off}

Turns the loaded word grammar on or off.

set limit {on | off}

Limits the result of a generation or recognition function to one form.

set rules{on |off} {list of numbers|all}

Turns selected rules on or off.

set timing {on |off}

Times the execution of generation and recognition functions and displays the result.
set tracing {on | off |level}

Turns the tracing mechanism on or off.

set tree {full |flat |indented | of f}

Determines how tree structures are displayed.

set trim-empty-features{on | off}

Determines how empty features are displayed.

set unification {on | off}

Turns feature unification in the word grammar on or off.

set verbose {on |off}

Determines the amount of information shown on the screen during a file comparison operation.
set warnings{on | off}

Turns warning mode on or off.

show [status]

Same as status.

show lexicon sublexicon-name

Displays the contents of the named sublexicon. For each lexical entry it shows the lexical form, gloss, and
continuation class.

show rule rule-number

Displays the number, on/off status, and name of the rule (similar to the list rules command). If theruleis
turned on, it then displays each column header of the state table for that rule with the set of feasible pairsthat it
specifies.

status

Displays the names of the rules, lexicon and grammar files currently loaded, the name of the log file (if logging
is on), the comment delimiter character, and the status of the processing options controlled by the set
command. Obeys the synonyms show status and show.

synthesize [morphological-form]

Accepts as input a morphologica form (a sequence of morpheme glosses separated by spaces) and returns one
or more surface forms.

system [system-command]

Executes an operating system command or invokes anew command processor shell. Seealso!. This
command is available only for the MS-DOS and UNIX versions of PC-KIMMO.

take [filespec]

Reads and executes commands from filespec.

4.7 File formats

4.7.1 Rules file

4.7.2 Lexicon files

4.7.3 Grammar file

4.7.4 Generation comparison file

4.7.5 Recognition comparison file

4.7.6 Pairs comparison file

4.7.6A Synthesis comparison file

4.7.7 Generation file

4.7.8 Recognition file

4.7.8A Synthesis file

4.7.9 Summary of default file names and extensions
Figure 4.1 Structure of therules file

Figure 4.2 A samplerulesfile

Figure 4.3 Structure of the main lexicon file
Figure 4.4 A sample main lexicon file
Figure 4.5 Structure of a lexical entry
Figure 4.6 A sample lexical entry

Figure 4.7 Structure of the grammar file
Figure 4.8A A lexical rule example

Figure 4.8B Feature structure before application of lexical rule

Figure 4.8C Feature structure after application of lexical rule
Figure 4.9 A sample grammar file

Figure 4.10 A sample generation comparison file

Figure 4.11 A sample recognition comparison file

Figure 4.12 A sample pairs comparison file

Figure 4.12A A sample synthesis comparison file

Figure 4.13 A sample generation file

Figure 4.14 A sample recognition file

Figure 4.14A A sample synthesis file

Figure 4.15 Default file names and extensions

This section describes the formats for the files that are used as input to PC-KIMMO. In any of thefiles,
comments can be added to any line by preceding the comment with the comment character. This character is
normally a semicolon (;), but can be changed with the COMMENT keyword in the rules file. Anything
following a comment character (until the end of the line) is considered part of the comment and isignored by
PC-KIMMO.

In the descriptions below, reference to the use of a space character implies any whitespace character (that is,
any character treated like a space character). The following control characterswhen used in afileare
whitespace characters: *l (ASCII 9, tab), *J (ASCII 10, line feed), "K (ASCII 11, vertical tab), *L (ASCII
12, form feed), and "M (ASCII 13, carriage return).

The control character ~Z (ASCII 26) cannot be used because MS-DOS interprets it as marking the end of afile.
Also the control character *@ (ASCII 0O, null) cannot be used.

Examples of each of the following file types are found on the rel ease diskette as part of the English description.

4.7.1 Rulesfile

The general structure of therulesfileisalist of keyword declarations. Figure4.1 shows the conventional
structure of the rulesfile. Note that the notation {x | y} means either x or y (but not both). The following
specifications apply to the rulesfile.

Figure 4.1 Structure of therulesfile

COVWMENT <char act er >

ALPHABET <synbol |ist>

NULL <char acter>

ANY <char act er >

BOUNDARY <char act er >

SUBSET <subset nane> <synbol |ist>
. (nore subsets)

RULE <rul e nane> <nunber of states> <nunber of col ums>
<l exi cal synmbol list>

<surface synbol list>

<state nunmber>{: | .} <state nunber |ist>

. (nore states)

. (nore rul es)

END

Extra spaces, blank lines, and comment lines are ignored.

Comments may be placed anywhere in the file. All datafollowing acomment character to the end of
thelineisignored. (See below on the COMMENT declaration.)

The set of valid keywords used to form declarations includes COMMENT, ALPHABET, NULL,
ANY, BOUNDARY, SUBSET, RULE, and END.

These declarations are obligatory and can occur only oncein afilee ALPHABET, NULL, ANY,
BOUNDARY.

These declarations are optional and can occur one or moretimesin afilee COMMENT, SUBSET, and
RULE.

The COMMENT declaration sets the comment character used in the rulesfile, lexicon files, and
grammar file. The COMMENT declaration can only be used in the rulesfile, not in the lexicon or
grammar file. The COMMENT declaration isoptiond. If it is not used, the comment character is set to
; (semicolon) as a default.

The COMMENT declaration can be used anywhere in the rulesfile and can be used more than once.
That is, different parts of the rulesfile can use different comment characters. The COMMENT
declaration can (and in practice usually does) occur as the first keyword in the rulesfile, followed by
either one or more COMMENT declarations or the ALPHABET declaration.

Note that if you use the COMMENT declaration to declare the character that is aready in use asthe
comment character, an error will result. For instance, if semicolon is the current comment character,
the declaration COMMENT ; will result in an error.

The comment character can no longer be set using a command line option or with acommand in the
user interface, aswasthe case in version 1 of PC-KIMMO.

The ALPHABET declaration must either occur first in the file or follow one or more COMMENT
declarations only. The other declarations can appear in any order. The COMMENT, NULL, ANY,
BOUNDARY, and SUBSET declarations can even be interspersed among the rules. However, these
declarations must appear before any rule that uses them or an error will result.

The ALPHABET declaration defines the set of symbols used in either lexical or surface
representations. The keyword ALPHABET isfollowed by a<symbol list> of al alphabetic symbols.
Each symbol must be separated from the others by at least one space. The list can span multiple lines,
but ends with the next valid keyword. All alphanumeric characters (such asa, B, and 2), symbols
(such as $ and +), and punctuation characters (such as. and ?) are available as a phabet members. The
charactersin the IBM extended character set (above ASCII 127) are dso available. Control characters
(below ASCII 32) can aso be used, with the exception of whitespace characters (see above), ~Z (end
of file), and *@ (null). The aphabet can contain a maximum of 255 symbols. An a phabetic symbol
can also be amultigraph, that is, a sequence of two or more characters. The individual characters
composing a multigraph do not necessarily have to also be declared as a phabetic characters. For
example, an alphabet could include the characters s and z and the multigraph sz%, but not include %
as an aphabetic character. Note that a multigraph cannot aso be interpreted as a sequence of the
individua characters that compriseit.

The keyword NULL isfollowed by asingle <character> that represents anull (empty, zero)
element. The NULL symbol is considered to be an a phabetic character, but cannot also be listed in the

ALPHABET declaration. The NULL symbol declared in the rulesfileis also used in the lexicon file to
represent anull lexical entry.

The keyword ANY isfollowed by asingle "wildcard" <character> that represents a match of any
character in the alphabet. The ANY symbol is hot considered to be an alphabetic character, though it is
used in the column headers of state tables. It cannot be listed in the ALPHABET declaration. It is not
used in the lexiconfile.

The keyword BOUNDARY isfollowed by asingle <character> character that represents an initial or
final word boundary. The BOUNDARY symbol is considered to be an a phabetic character, but
cannot also be listed in the ALPHABET declaration. When used in the column header of a state table,
it can only appear asthe pair #:# (where, for instance, # has been declared asthe BOUNDARY
symbol). The BOUNDARY symbol is aso used in the lexicon file in the continuation classfield of a
lexical entry to indicate the end of aword (that is, no continuation class).

The SUBSET declaration defines set of characters that are referred to in the column headers of rules.
The keyword SUBSET isfollowed by the <subset name> and <symbol list>. <subset name> isa
single word (one or more characters) that names the list of charactersthat follows it. The subset name
must be unique (that is, if it isasingle character it cannot also be in the alphabet or be any other
declared symboal). It can be composed of any characters (except space); that is, it is not limited to the
characters declared in the ALPHABET section. It must not be identical to any keyword used in the
rulesfile. The subset name is used in rulesto represent all members of the subset of the aphabet that it
defines. Note that SUBSET declarations can be interspersed among the rules. This allows subsets to
be placed near the rule that uses them if such astyleis desired. However, a subset must be declared
before arule that usesit.

The<symbol list> following a<subset name> isalist of single symbols, each of whichis
separated by at |east one space. The list can span multiple lines. Each symbol in the list must be a
member of the previously defined ALPHABET, with the exception of the NULL symbol, which can
appear in asubset list but is not included in the ALPHABET declaration. Neither the ANY symbol nor
the BOUNDARY symbol can appear in asubset symbol list.

The keyword RULE signalsthat a state table immediately follows.

<rule name> isthe name or description of the rule which the state table encodes. It functions as an
annotation to the state table and has no effect on the computational operation of thetable. It is
displayed by the list rules and show rule commands and is also displayed in traces. The rule name
must be surrounded by apair of identical delimiter characters. Any material can be used between the
delimiters of the rule name with the exception of the current comment character and of course the rule
name delimiter character of the rule itself. Each rulein the file can use adifferent pair of delimiters.
The rule name must be al on one line, but it does not have to be on the same line asthe RULE
keyword.

<number of states> isthe number of states (rowsin thetable) that will be defined for thistable. The
states must begin at 1 and go in sequence through the number defined here (that is, gapsin state
numbers are not allowed).

<number of columns> isthe number of state transitions (columnsin the table) that will be defined for
each state.

<lexical symbol list> isalist of elements separated by one or more spaces. Each element represents
the lexical half of alexical:surface correspondence which, when matched, defines a state transition.
Each element in the list must be either amember of the alphabet, a subset name, the NULL symbol,
the ANY symbol, or the BOUNDARY symbol (in which case the corresponding surface character
must aso be the BOUNDARY symbol). Thelist can span multiple lines, but the number of el ements
in the list must be equal to the number of columns defined for the rule.

<surface symbol list> isalist of elements separated by one or more spaces. Each element represents
the surface half of alexical:surface correspondence which, when matched, defines a state transition.

Each element in the list must be either amember of the alphabet, a subset name, the NULL symboal,
the ANY symbol, or the BOUNDARY symbol (in which case the corresponding lexical character must
also be the BOUNDARY symboal). Thelist can span multiple lines, but the number of charactersin the
list must be equal to the number of columns defined for the rule.

e <state number> isthe number of the state or row of the table. The first state number must be 1, and
subsequent state numbers must follow in numerical sequence without any gaps.

e {:|.} isthefina or nonfinal state indicator. This should be acolon () if the stateisafinal stateand a
period (.) if it isanonfinal state. It must follow the <state number> with no intervening space.

e <state number list> isalist of state transition numbers for a particular state. Each number must be
between 1 and the number of states (inclusive) declared for the table. The list can span multiple lines,
but the number of elementsin the list must be equal to the number of columns declared for thisrule.

e Thekeyword END follows al other declarations and indicates the end of the rulesfile. Any material
in the file thereafter isignored by PC-KIMMO. The END keyword is optional; the physical end of the
file also terminatesthe rulesfile.

Figure 4.2 shows a sample rulesfile.
Figure 4.2 A samplerulesfile

ALPHABET
bcdfghj kIl mnpgr stvwxyz+ ; + is norphene boundary
aei ou

NULL O

ANY @

BOUNDARY #

SUBSET Cb c d f

SUBSET Vaei o
nore subsets

ghj kl mnpgr stvwxyz
u

RULE "Consonant_defaults"

e

PR

END

4.7.2 Lexicon files

A lexicon consists of one main lexicon file plus one or more files of lexical entries. The genera structure of the
main lexicon fileisalist of keyword declarations. The set of valid keywordsis ALTERNATION,
FEATURES, FIELDCODE, INCLUDE, and END. Figure 4.3 shows the conventional structure of the lexicon
file. The following specifications apply to the main lexicon file.

Figure 4.3 Structure of the main lexicon file

ALTERNATI ON <al t ernati on nane> <subl exi con nane |ist>
(nore ALTERNATI ONs)

i:EATURES <feature abbreviation |ist>

FI ELDCCDE <l exical item code> U
FI ELDCODE <subl exi con code> L
FI ELDCODE <alternation code> A
FI ELDCCDE <f eatures code> F

FI ELDCODE <gl oss code> G

I NCLUDE <fil espec>
(rmore | NCLUDEd fil es)

END

Extra spaces, blank lines, and comment lines are ignored.

The comment character declared in the rulesfile is operative in the main lexicon file. Comments may
be placed anywhere in the file. All data following acomment character to the end of the line isignored.

The set of valid keywords used to form declarations includes ALTERNATION, FEATURES,
FIELDCODE, INCLUDE, and END.

The declarations can appear in any order with the proviso that any alternation name, feature name, or
fieldcode used in alexica entry must be declared before the lexical entry isread. In practice, this
means that the INCLUDE declarations should appear last, but the ALTERNATION, FEATURES, and
FIELDCODE declarations can appear in any order.

The ALTERNATION declaration defines a set of sublexicon names that serve as the continuation
class of alexical item. The ALTERNATION keyword isfollowed by an <alternation name> and a
<sublexicon name list>. ALTERNATION declarations are optional (but nearly always used in
practice) and can occur as many times as needed.

<alternation name> is a name associated with the following <sublexicon name list>. It isaword
composed of one or more characters, not limited to the ALPHABET characters declared in the rules
file. An dternation name can be any word other than akeyword used in the lexicon file. The program
does not check to seeif an aternation nameis actually used in the lexicon file.

<sublexicon name list> isalist of sublexicon names. It can span multiple lines until the next valid
keyword is encountered. Each sublexicon namein the list must be used in the sublexicon field of a
lexical entry. Although it is not enforced at the time the lexicon file is loaded, an undeclared sublexicon
named in a sublexicon name list will cause an error when the recognizer triesto use it.

The FEATURES keyword followed by a <feature abbreviation list>. A <feature abbreviation
list> isalist of words, each of which is expanded into feature structures by the word grammar.

The FIELDCODE declaration is used to define what fieldcode will be used to mark each type of field
inalexical entry. The FIELDCODE keyword isfollowed by a<code> and one of five possible
internal codes: U, L, A, F, or G. There must be five FIELDCODE declarations, one for each of these
internal codes, where U indicates the lexical item field, L indicates the sublexicon field, A indicates the
aternation field, F indicates the features field, and G indicates the gloss field.

The INCLUDE keyword isfollowed by a<filespec> that names afile containing lexical entriesto be
loaded. An INCLUDEd file cannot contain any declarations (such asa FIELDCODE or an INCLUDE
declaration), only lexical entries and comment lines.

e Thekeyword END followsal other declarations and indicates the end of the main lexicon file. Any
materia in the file thereafter isignored by PC-KIMMO. The END keyword is optiona; the physical
end of the file aso terminates the main lexicon file.

Figure 4.4 shows a sample main lexicon file.
Figure 4.4 A samplemain lexiconfile

ALTERNATI ON Begi n PREF
ALTERNATI ON Pref N Al V AV
ALTERNATI ON St em SUFFI X

FEATURES sg pl reg irreg

FI ELDCCDE | f U ;lexical item
FI ELDCCDE | x L ; subl exi con

FI ELDCODE alt A ;alternation
FI ELDCODE fea F ;features
G

FI ELDCODE 4l ; gl oss

I NCLUDE affi x. | ex ;file of affixes
| NCLUDE noun. | ex ;file of nouns

| NCLUDE verb. | ex ;file of verbs

| NCLUDE adj ectiv.lex ;file of adjectives
| NCLUDE adverb. | ex ;file of adverbs

END

Figure 4.5 shows the structure of alexical entry. Lexical entries are encoded in "field-oriented standard
format.” Standard format is an information interchange convention devel oped by the Summer Institute of
Linguigtics. It tags the kinds of information in ASCII text files by means of markers which begin with
backd ash. Field-oriented standard format (FOSF) is arefinement of standard format geared toward
representing data which has a database-like record and field structure. The following points provide an
informal description of the syntax of FOSF files.

Figure 4.5 Structure of alexica entry

\<lexical itemcode> <lexical itenpr

\ <subl exi con code> <subl exi con nane>

\<al ternation code> {<alternation name> | <BOUNDARY synbol >}
\ <features code> <features |ist>

\ <gl oss code> <gl oss string>

e Afield-oriented standard for mat (FOSF) file consists of a sequence of records.

e Arecord consists of asequence of fields.

e Afield consst of afield marker and afield value.

A field marker consists of a backslash character at the beginning of aline, followed by an
alphabetic or numeric character, followed by zero or more printable characters, and terminated by a

space, tab, or the end of aline. A field marker without itsinitial backsash character istermed afield
code.

A field marker must begin in thefirst position of aline. Backslash characters occurring elsewhere in
the file are not interpreted as field markers.

Thefirst field marker of the record is considered the record marker, and thus the same field must
occur first in every record of thefile.

Each field marker is separated from thefield value by one or more spaces, tabs, or newlines. The
field value continues up to the next field marker.

Any linethat isempty or contains only whitespace charactersis considered acomment lineand is
ignored. Comment lines may occur between or within fields.

Fields and linesin an FOSF file can be arbitrarily long.
There are two basic types of fieldsin FOSF files: nonrepeating and r epeating. Repeating fields

are multiple consecutive occurrences of fields marked by the same marker. Individual fieldswithin a
repeating field can be called subfields.

The following specifications apply to how FOSF isimplemented in PC-KIMMO.

Lexical entries are encoded asrecordsin a FOSF file.

Only those fields whose field codes are declared in the main lexicon file are recognized (see above on
the FIELDCODE declaration). All other fields are considered to be extraneous and are ignored.

Thefirst field of each lexical entry must be the lexical item field. Thelexical item field codeis
assigned to the internal code U by a FIELDCODE declaration in the main lexicon file.

Only nonrepesating fields are permitted.

The comment character declared in the rulesfileis operative in included files of lexical entries. All
data following a comment character to the end of the lineisignored.

A file of lexical entriesisloaded by using an INCLUDE declaration in the main lexicon file (see above). An
INCLUDEd file of lexical entries cannot contain any declarations (such asa FIELDCODE or an INCLUDE
declaration), only lexical entries and comment lines.

The following specifications apply to lexical entries.

A lexical entry is composed of fivefields: lexical item, sublexicon, aternation, features, and gloss.
Thelexical item, sublexicon, and alternation, fields are obligatory, the features and glossfields are
optional. Thefirst field of the entry must always be the lexical item. The other fields can appear in any
order, even differing from one entry to another.

Although the gloss field isoptional, if alexical entry does not include one, a warning message to that
effect will be displayed when the entry isloaded. To supress this warning message, do the command
set war nings off (see section 4.5.6.1) before loading the lexicon.

If an entry has an empty glossfield (that is, the field marker for the glossfield is present but thereis
no data after it), then the contents of the lexical form field will be also be used as the gloss for that
entry.

A lexicd item field consists of a<lexical item code> and a<lexical item>.

A <lexical item code> isafield code assigned to theinternal code L by a FIELDCODE declaration
in the main lexicon file.

A <lexical item> isone or more characters that represent an element (typically a morpheme or word)
of the lexicon. Each character (or multigraph) must be in the alphabet defined for the language. The
lexical item uses only the lexical subset of the a phabet.

A sublexicon field consists of a <sublexicon code> and a<sublexicon name>.

A <sublexicon code> isafield code assigned to the internal code L by a FIELDCODE declaration in
themain lexiconfile.

A <sublexicon name> isthe name associated with a sublexicon. It isaword composed of one or

more characters, not limited to the a phabetic characters declared in the rulesfile. Every lexical item
must belong to a sublexicon. Every lexicon must include a special sublexicon named INITIAL (that is,
there must be at least one lexical entry that belongsto the INITIAL sublexicon).

e Lexica entriesbelonging to a sublexicon do not have to be listed consecutively in asinglefile (aswas
the case for PC-KIMMO version 1); rather, lexical entriesin afile can occur in any order, regardless
of what sublexicon they belong to. Lexical entries of a sublexicon can even be placed in two or more
separate files.

e An dternation field consists of a<alternation code> followed by either an <alternation name> or
the <BOUNDARY symbol>.

e An<alternation name> isdeclared in an ALTERNATION declaration in the main lexicon file. The
<BOUNDARY symbol> is declared in the rulesfile and indicates the end of all possible continuations
in the lexicon.

o A featuresfield consists of a<features code> and a<features list>.

e A <features code> isafield code assigned to the internal code F by a FIELDCODE declaration in the
main lexicon file.

e A <featureslist> isalist of feature abbreviations. Each abbreviation is asingle word consisting of
alphanumeric characters or other charactersexcept () {}[] <>=: $! (these are used for special purposes
in the grammar file). The character\ should not be used as the first character of an abbreviation
because that is how fields are marked in the lexicon file. Upper and lower case |etters used in template
names are considered different. For example, "PLURAL" is not the same as"Plura" or "plural."
Feature abbreviations are expanded into full feature structures by the word grammar (see section
4.7.3).

e A glossfield consists of a<gloss code> and a<gloss string>.

e A <glosscode> isafield code assigned to the internal code G by a FIELDCODE declaration in the
main lexicon file.

A <gloss string> isastring of text. Any material can be used in the gloss field with the exception of
the comment character.

Figure 4.6 shows a sample lexical entry.
Figure 4.6 A samplelexica entry

\[f “knives

\Ix N

\alt Infl

\fea pl irreg

\gl N(knife)+PL

4.7.3 Grammar file

The grammar file consists of feature templates, context-free rules, and feature constraints. Figure 4.7 shows
the conventiona structure of the grammar file.

Figure 4.7 Structure of the grammar file

LET <abbreviation | category> be <feature definition>
(rmore feature tenpl ates)

DEFI NE <l exi cal rule nanme> as <mappi ngs>

(rmore lexical rules)

PARAMETER <par aneter nane> i s <paraneter val ue>
(nmore paraneter settings)

RULE <rul e>
<feature constraint>
(rmore constraints)

(rmore rul es)

END

The following specifications apply generaly to the grammar file.

e Blank lines, spaces, and tabs separate elements of the grammar file from one another, but are ignored
otherwise.

e The comment character declared in the rulesfile is operative in the grammar file. Comments may be
placed anywhere in the grammar. All data following acomment character to the end of thelineis
ignored.

e A grammar file minimally consists of one or more context-free rules. Each rule may optionally specify
feature constraints.

e A grammar fileisdivided into fieldsidentified by asmall set of keywords.

1. Rul e Starts acontext-free rule with its set of feature constraints. These rules define how
words join together to form phrases, clauses, or sentences. The lexicon and grammar are tied
together by using the lexical categories as the terminal symbols of the context-free rules and
by using the other lexical featuresin the feature constraints.

2. Let dartsafeature template definition. Feature templates are used as macros (abbreviations)
in the lexicon. They may aso be used to assign default feature structures to the categories.

3. Paranet er startsaprogram parameter definition. These parameters control various aspects of
the program.

4. Define startsalexical rule definition. Lexical rules are used to modify the feature structures
of lexical entries.

5. End effectively terminates the file. Anything following this keyword is ignored.

Note that these keywords are not case sensitive: RULE isthe same asr ul e, and both are the same as
Rul e.

e Each of thefieldsin the grammar file may optionally end with a period. If there is no period, the next
keyword (in an appropriate slot) marks the end of one field and the beginning of the next.

Rules
The following specifications apply to rules.
A grammar rule has these parts, in the order listed:

1. thekeywordRul e

O N o o c w D

an optiona ruleidentifier enclosed in braces({})

the nonterminal symbol to be expanded

an arrow (- >) or equal sign (=)

zero or more termina or nonterminal symbols, possibly marked for aternation or optionality
an optional colon (:)

zero or more feature constraints, possibly marked for aternation

an optional period (.)

The optional rule identifier (item 2) consists of one or more words enclosed in braces. Its current utility isonly
asaspecia form of comment describing the intent of the rule. (Eventually it may be used as atag for
interactively adding and removing rules.) The only limits on the rule identifier are that it not contain the
comment character and that it all appears on the same line in the grammar file.

The terminal and nonterminal symbolsin the rule have the following characteristics:

Blank lines, spaces, and tabs separate symbols from one another, but otherwise are ignored.

Upper and lower case letters used in symbols are considered different. For example, STEMis not the
same as St em and neither isthe same asst em

Index numbers are used to distinguish instances of a symbol that is used more than oncein arule.
They are added to the end of a symbol following an underscore character (_). For example,

Stem 1l = Stem 2 SUFFI X

The symbol X may be used to stand for any terminal or nonterminal category. For example, thisrule
saysthat aN expands into a NStem plus any category.

N = NStem X

The symbol X can be useful for capturing generdities. Care must be taken, since it can be replaced by
anything.

The characters () {}[] <>=:/ cannot be used in terminal or nonterminal symbols since they are used
for specia purposes in the grammar file. The character _ can be used only for attaching an index
number to a symbol.

By default, the left hand symbol of thefirst rule in the grammar file isthe start symbol of the
grammar.

There can be multiple rules for the same symbol, but al rulesfor a symbol must be contiguous in the
file.

The symbols on the right hand side of a context-free rule may be marked or grouped in various ways.

Parentheses around an element of the expansion (righthand) part of arule indicate that the element is
optional. Parentheses may be placed around multiple elements. This makes an optional group of
elements.

A forward dash (/) is used to separate aternative elements of the expansion (righthand) part of arule.

Curly braces can be used for grouping elements. For example the following says that aN consists of
aNStem followed by either a Sing or a Plural:

N = NStem {Sing / Plural}

e Alternatives are taken to be aslong as possible. Thusif the curly braces were omitted from the rule
above, asin the rule below, the Sing would be treated as part of the aternative containing the NStem.
It would not be allowed before the Plural.

N = NStem Sing / Plura

e Parentheses group enclosed elements the same as curly braces do. Alternatives and groups delimited
by parentheses or curly braces may be nested to any depth.

Feature structures

The grammar formalism uses abasic element called afeature structure. A feature structure consists of a
feature name and avalue. The notation used for feature structures looks like this:

[nunber: singul ar]

where number isthe feature name and singular isthe value, separated by a colon. Feature names and values
are single words consisting of aphanumeric characters or other charactersexcept () {}[]1<>=: $! (theseare
used for special purposesin the grammar file). Upper and lower case letters used in feature names and values
are considered different. For example, "NUMBER" is not the same as "Number" or "number.”

A structure containing more than one feature uses square brackets around the entire stucture:

[nunber: singul ar
case: nomnative]

Extra spaces and line breaks are optional.
Feature structures can have either smple values, such as the example above, or complex vaues, such asthis:

[agreenent: [nunber: singular]
case: nomnative]]

where the value of the agreement feature is another feature structure. Feature structures can be infinitely nested
in this manner.

Feature can share values. Thisis not the same thing as two features having identical values. In the first
example below, the features aand ¢ have identical values; but in the second example, they share the same
value:

[a: [p:q]
b: [p:a]]
[a: $1[p:q]
b: $1]

Shared values are indicated by coindexing them with the prefix $1, $2, and so on.

Portions of afeature structure can be referred to using the "path” notation. A path is a sequence of feature
names (minimally one) enclosed in angled brackets (<>). For example, consider this feature structure:

[agreenent: [nunber: singular
case: nominative]]

These are feature paths based on this structure:

<nunber >

<case>

<agr eenent nunber>
<agreenent case>

Paths are used in feature templates and feature constraints, described below. All lexical items used by the
grammar are assigned three features:. cat, lex, and gloss. These should be treated as reserved names and not
used for other purposes.

e Thevalue of the cat feature isthe name of the sublexicon to which the lexical item belongs, taken
from the sublexicon field of theitem'slexical entry.

e Thevaue of thelex featureisthelexical form of the item, taken from the lexical form field of the
item's lexical entry.

e Thevalue of the glossfeature is the gloss of the item, taken from the gloss field of the item'slexical
entry.

For example, hereisalexical entry for the word fox:

\If “fox
\Ix N

\alt Stem
\gl N(fox)

When thisentry is used by the grammar, it is represented as this feature structure:

[cat: N
lex: ~fox
gl oss: N(fox)]

Feature constraints

A ruleisfollowed by zero or more feature constraint; which refer to symbols used in the rule. The following
specifications apply to feature constraints.

A feature constraint has these parts, in the order listed:
1. afeature path that begins with one of the symbols from the context-free rule
2. anequa sign
3. either another path or avalue

A feature constraint that refers only to symbols on the right hand side of the rule constrains their
co-occurrence. In the following rule and constraint, the value of the Stem's head pos feature must unify with
the value of the SUFFIX's from_pos feature:

Word -> Stem | NFL
<Stem head pos> = <INFL from pos>

If afeature constraint refersto a symbol on the right hand side of the rule, and has an atomic value on itsright
hand side, then the designated feature must not have a different value. In the following rule and constraint, the
head case feature for the PRONOUN node of the parse tree must either be originally undefined or equal to
NOM:

Word -> PRONOUN
<PRONOQUN head case> = NOM

(If the head case feature of the PRONOUN node was originally undefined, then, after unification succeeds, it
will be equal to NOM.)

A feature congtraint that refers to the symbol on the left hand side of the rule passes information up the parse
tree. In the following rule and constraint, the value of the head feature is passed from the INFL node up to the

Word node:

Wrd -> Stem | NFL
<Wrd head> = <I NFL head>

PC-KIMMO alows digunctive feature constraints with its phrase structure rules. Consider these two rules:

Stem 1l -> PREFI X Stem 2
<PREFI X from pos> = <Stem 2 head pos>
<PREFI X change_pos> = +
<Stem 1 head> = <PREFI X head>

Stem1 -> PREFI X Stem 2
<PREFI X from pos> = <Stem 2 head pos>
<PREFI X change_pos> = -
<Stem 1 head> = <Stem 2 head>

These rules have the same context-free rule part. They can therefore be collapsed into thissingle rule,, which
has adigunction in its feature constraints:

Stem 1 -> PREFI X Stem 2
<PREFI X from pos> = <Stem 2 head pos>

{
<PREFI X change_pos> = +

<Stem 1 head> = <PREFI X head>
/

<PREFI X change_pos> = -
<Stem 1 head> = <Stem 2 head>

}

Digunctive feature constrains may be nested up to eight levels deep.
Feature templates
The following specifications apply to feature templates.
A feature template has these parts, in the order listed:

1. thekeywordLet

2. thetemplate name

3. thekeywordbe

4. afeature definition

5. anoptional period (.)
If the template nameis aterminal category (aterminal symbol in one of the context-free rules), the template
defines the default features for that category. Otherwise the template name serves as an abbreviation for the
associated feature structure. Templates may occur anywherein thefile (interspersed among the rules), but a
template must occur before any rule or other template that uses the abbreviation it defines.
Template names are single words consisting of a phanumeric characters or other characters except
O {}[1<>=$! (theseare used for specia purposes in the grammar file). The character \ should not be used as
the first character of atemplate name because that is how fields are marked in the lexicon file. Upper and lower
case |etters used in template names are considered different. For example, "PLURAL" is not the same as
"Plura” or "plural."

The abbreviations defined by templates are usually used in the feature field of entriesin the lexicon file. For
example, the lexical entry for the irregular plural form feet may have the abbreviation pl in its features field.

The grammar file would define this abbreviation with atemplate like this:

Let pl be [nunber: PL]
The path notation may also be used:

Let pl be <nunber> = PL

More complicated feature structures may be defined in templates. For example,

Let 3sg be [tense: PRES

agr: 3SG
finite: +
viorm g

which isequivalent to:

Let 3sg be [<tense> = PRES
<agr > = 3SG
<finite> = +
<vform = S

In the following example, the abbreviation irregis defined using another abbreviation:

Let irreg be <reg> = -
pl

The abbreviation pl must be defined previoudly in the grammar file or an error will result. A subsequent
template could also use the abbreviation irregin its definition. In thisway, an inheritance hierarchy features
may be constructed.

Feature templates permit digunctive definitions. For example, the lexical entry for the word deer may specify
the feature abbreviation sg-pl. The grammar file would define this as a digunction of feature structures
reflecting the fact that the word can be either singular or plural:

Let sg/pl be {[nunber:SG
[nunber: PL]}

This has the effect of creating two entries for deer, one with singular number and another with plural. Note
that there is no limit to the number of digunct structures listed between the braces. Also, thereisno dash (/)
between the elements of the disunction as there is between the elements of adigunction in the rules. A shorter
version of the above template using the path notation looks like this:

Let sg/pl be <nunber> = {SG PL}

Abbreviations can aso be used in digunctions, provided that they have previously been defined:

Let sg be <nunber> = SG
Let pl be <nunber> = PL

Let sg/pl be {[sg] [pl]}

Note the square brackets around the abbreviations sg and pl without square brackets they would be interpreted
as simple values instead.

Feature templates can assign default atomic feature values, indicated by prefixing an exclamation point (!). A
default value can be overridden by an explicit feature assignment. This template says that all members of
category N have singular number as a default value:

Let N be <nunber> = !SG

The effect of thistemplate isto make al nouns singular unless they are explicitly marked as plural. For

example, regular nouns such as book do not need any featurein their lexical entriesto signal that they are
singular; but an irregular noun such as feet would have a feature abbreviation such aspl initslexica entry.
Thiswould be defined in the grammar as[nunber: PL], and would override the default value for the feature
number specified by the template above. If the N template above used SGinstead of ! SG, then the word feet
would fail to parse, since its number feature would have an internal conflict between sGand pPL.

2.3 Parameter settings
Parameter settings are used to override various default settings assumed in the grammar file. Parameter settings
are optional. In the absence of a parameter setting, a default value isused. A parameter setting has these parts,
in the order listed:
1. thekeyword Par aret er
2. anoptional colon (:)
3. one or more keywords identifying the parameter
4. thekeywordi s
5. the parameter value
6. anoptional period (.)
PC-KIMMO recognizes the following parameters:

e Sart symbol definesthe start symbol of the grammar. For example,

Parameter Start synbol is Wrd

declares that the parse goal of the grammar isthe nonterminal category Word. The default start symbol
isthe left hand symbol of the first context-free rule in the grammar file.

e Attribute order specifiesthe order in which feature attributes are displayed. For example,

Parameter Attribute order is cat head root root_ pos

declares that the cat attribute should be the first one shown in any output from PC-KIMMO and that
the other attributes should be shown in the relative order shown, with the root_pos attribute shown
last among those listed, but ahead of any attributes that are not listed above. Attributes that are not
listed are ordered according to their character code sort order. If the attribute order is not specified,
then the category feature cat is shown first, with all other attributes sorted according to their character
codes.

e Category feature definesthe label for the category attribute. For example,

Par amet er Category feature is Categ

declaresthat Categ is the name of the category attribute. The default name for this attribute is cat
e Lexical feature definesthe labd for the lexical attribute. For example,

Par aneter Lexical feature is Lex

declares that Lex isthe name of the lexical attribute. The default name for this attribute islex
e Glossfeature definesthe label for the gloss attribute. For example,

Paraneter 3 oss feature is d oss

declaresthat Glossis the name of the gloss attribute. The default name for this attribute is gloss.

2.4 Lexical rules

Lexical rules are used to modify the feature structures of lexical entries. As noted in Shieber 1985, something
more powerful than just abbreviations for common feature elements is sometimes needed to represent
systematic relationships among the elements of alexicon. Thisneed is met by lexical rules, which express
transformations rather than mere abbreviations.

Lexical rules are similar to feature templates, but are more powerful. While feature templates assign afeature
structure to lexical items by means of unification, lexical rules map one feature structure to another, thus
transforming it. The name of alexical ruleisincluded in the featuresfield of lexical entries, similar to feature
abbreviations.

A lexical rule hasthese parts, in the order listed:
1. thekeywordDefi ne
2. thenameof thelexical rule
3. thekeywordas
4. theruledefinition
5. anoptional period (.)

The rule definition consists of one or more mappings. Each mapping has three parts: an output feature path, an
assignment operator, and the value assigned, either an input feature path or an atomic value. Every output path
begins with the feature name out and every input path begins with the feature namei n. The assignment
operator iseither an equal sign (=) or an equal sign followed by a"greater than" sign (=>). (These two
operators are equivaent in PC-KIMMO, since the implementation treats each lexical rule as an ordered list of
assignments rather than using unification for the mappings that have an equal sign operator.) Consider the
information shown in figure 4.8A.

Figure 4.8A A lexica rule example

;lexical item

\If ~nouse

\fea irreg POS_d oss
\gl " nouse

;feature tenpl ate
LET irreg be = -

lexical rule
DEFI NE PCS_d oss as

Thefeaturefield (\ f ea) of the lexical entry containstwo labels: irregis afeature abbreviation and is defined
by afeature template (the LET statement), while POS_Glossisthe name of alexical rule which is defined by the
DEFI NE statement.

Figure 4.8B Feature structure before application of lexica rule
[cat: ROOT

head: [agr: [3sg:-]
number : PL

pos: N

proper: -
verbal : -]

reg:

| ex: “mce

gl oss: " nouse]

Figure 4.8C Feature structure after application of lexical rule

[cat: ROOT

head: [agr: [3sg:-]
nunber: PL
pos: N
pr oper: -
verbal : -]

| ex: “mce

gloss: N]

When the lexicon entry isloaded, it isinitialy assigned the feature structure shown in figure 4.8B, whichis
the unification of the information given in the various fields of the lexicon entry, including the feature
abbreviation pl. After the complete feature structure has been built, the lexical rule named POS _Glossis
applied, producing the feature structure shown in figure 4.8C. Note that the change in the value of the gloss
feature from " "mouse" to "N" is done by direct mapping, not unification.

There are two important points about using lexical rules. First, the feature structure of alexical item that has
undergone alexical ruleis entirely determined by the mappingsin thelexical rule. Inthelexica rulein figure
4.8A, the first three mappings (for cat, head, and lex), though they seem redundant, are needed to carry over
these feature values from the input feature structure to the output feature structure. Notice that the feature reg
which is present in the input feature structure in figure 4.8B is absent from the output feature structure in figure
4.8C; thisis dueto the fact that the lexical rule which applied to the feature structure did not include a mapping
for theregfeature.

Second, lexical rules apply sequentially in the order in which they are given in the grammar file.
Figure 4.9 shows a sample grammar file.
Figure 4.9 A sample grammear file

; FEATURE TEMPLATES (optional)

; Feature definitions

Let pl be <head nunber> = PL

LET v/n be <frompos> =V
<head pos> = N
<head nunber> = ! SG

LET viaj be <frompos> = AJ
<head pos> =V

; Category definitions
Let N be <cat> = ROOT
<head pos> = N
<head nunber> = ! SG
Let V be <cat> = ROOT
<head pos> =V
Let AJ be <cat> = ROOT
<head pos> = AJ

; PARAMETER SETTI NGS (opti onal)
PARAMETER Start synbol is Wrd

; RULES

RULE

Wrd = Stem | NFL
<Stem head pos> = <INFL from pos>
<Word head> = <| NFL head>

RULE

Stem 1l = PREFI X Stem 2
<PREFI X from pos> = <Stem 2 head pos>
<Stem 1 head> = <PREFI X head>

RULE

Stem 1l = Stem 2 SUFFI X
<Stem 2 head pos> = <SUFFI X from pos>
<Stem 1 head> = <SUFFI X head>

RULE

Stem = ROOT
<St em head> = <ROOT head>

4.7.4 Generation comparison file

The generation comparison file serves as input to the compar e generate command (see section 4.5.12). It
consists of groupings of alexical form followed by one or more surface forms that are expected to be
generated from the lexical form. The following specifications apply to the generation comparison file.

e Each form must be on a separate line.

e Leading spaces are ignored.

e A blank line (or end of file) indicates the end of a grouping. Extra blank lines are ignored.

e Thefirst form in each grouping isthelexical form to be input to the generator. Its gloss does not have
to be included, since the generator does not use the lexicon; however, including a gloss with the
lexical form does no harm--it is simply ignored.

e Succeeding formsin each grouping are surface formsthat are the expected output of the generator.

Figure 4.10 shows a sample generation comparison file.

Figure 4.10 A sample generation comparison file

“trace+ed
traced

“trace+abl e
traceabl e

re-+ trace

re-trace
retrace

4.7.5 Recognition comparison file

The recognition comparison file serves as input to the compar e recognize command (see section 4.5.12). It
consists of groupings of a surface form followed by one or more lexical forms that are expected to be
recognized from the surface form. The following specifications apply to the recognition comparison file.

e Each form must be on a separate line.

e Leading spaces are ignored.

e A blank line (or end of file) indicates the end of a grouping. Extra blank lines are ignored.
e Thefirst form in each grouping isthe surface form to be input to the recognizer.
e Succeeding formsin each grouping are lexical forms that are the expected output of the recognizer.
The gloss of aform followsit on the same line, separated by one or more spaces. The gloss must
match exactly (including spaces) the way it is output from the recognizer.
Figure 4.11 shows a sample recognition comparison file.

Figure 4.11 A sample recognition comparison file

traced

“trace+ed [V(trace)+PAST]
“trace+ed [V(trace)+PAST. PRTC]
traceabl e

“trace+abl e [V(trace)+ADIR]
retrace

re-+ trace [REP+V(trace).|NF]

4.7.6 Pairs comparison file

The pairs comparison file serves as input to the compare pairs command (see section 4.5.12). It consists of
pairs of lexical and surface forms; that is, alexical form followed by exactly one surface form. It is expected
that the surface form will be recognized from the lexical form and that the lexical form will be generated from
the surface form. Glosses do not have to be included with lexical forms, since the generator does not use the
lexicon; however, including a gloss with the lexical form does no harm--it is smply ignored. When
recognizing a surface form, the lexicon is used to identify the constituent morphemes and verify that they occur
in the correct order, but the gloss part of alexical entry isnot used. The following specifications apply to the
pairs comparison file.

e Each form must be on a separate line.
e Leading spaces are ignored.
e A blank line (or end of file) indicates the end of a grouping. Extra blank lines are ignored.

e Thefirst form of apair isthelexical form, which isinput to the generator. It is the expected output on
inputting the second (surface) form to the recognizer. The glossis not included with the lexical form.

e Thesecond form of apair isthe surface form, which isinput to the recognizer. It is the expected
output on inputting the first (lexical) form to the generator.

Figure 4.12 shows a sample pairs comparison file.
Figure 4.12 A sample pairs comparison file

“trace+ed
traced

“trace+abl e
traceabl e

re-+ trace
re-trace

re-+ trace
retrace

4.7.6A Synthesis comparison file

The synthesis comparison file serves as input to the compar e synthesi ze command (see section 4.5.12). It
consists of groupings of amorphological form followed by one or more surface forms that are expected to be
synthesized from the morphological form. The following specifications apply to the synthesis comparison file.
e Each form must be on a separate line.
e Leading spaces are ignored.

e A blank line (or end of file) indicates the end of a grouping. Extra blank lines are ignored.

Thefirst form in each grouping is the morphological form to be input to the synthesizer. A
morphological form is a sequence of morpheme glosses separated by spaces.

e Succeeding formsin each grouping are surface formsthat are the expected output of the generator.
Figure 4.12A shows a sample synthesis comparison file.
Figure 4.12A A sample synthesis comparison file

“trace +ED
traced

“trace +EN
traced

“trace +AJR25a
traceabl e

ORD5+ “trace
retrace

4.7.7 Generation file

The generation file consists of alist of lexical forms. It serves asinput to the file generate command (see
section 4.5.13), which returns afile (or screen display) whose format isidentical to the generation comparison
file. The following specifications apply to the generation file.

e Each form must be on a separate line.
e Extrawhite space, blank lines, and comment lines are ignored.
e Eachformisassumedto bealexica form. If aglossisincluded, it isignored.
Figure 4.13 shows a sample generation file.
Figure 4.13 A sample generation file
“cat
“cat +s
“cat+'s
‘cat+s+'s
“fox
“fox+s

“fox+'s
“f ox+s+'s

4.7.8 Recognition file

The recognition file consists of alist of surface forms. It serves asinput to the file recognize command (see
section 4.5.14), which returns afile (or screen display) whose format is identical to the recognition
comparison file. The following specifications apply to the recognition file.

e Each form must be on a separate line.
e Extra spaces, blank lines, and comment lines are ignored.
e Eachform isassumed to be a surface form.

Figure 4.14 shows a sample recognition file.

Figure 4.14 A samplerecognitionfile

cat
cats
cat's
cats
f ox

f oxes
fox's
f oxes'

4.7.8A Synthesisfile

The synthesisfile consists of alist of morphological forms. A morphological form is a sequence of morpheme
glosses separated by spaces. A synthesisfile serves asinput to the file synthesis command (see section
4.5.13), which returns afile (or screen display) whose format isidentical to the synthesis comparison file. The
following specifications apply to the synthesisfile.

e Eachform must be on a separate line.
e Extrawhite space, blank lines, and comment lines are ignored.
e Each form isassumed to be a morphologica form.

Figure 4.14A shows a sample synthesisfile.

Figure 4.14A A sample synthesisfile

“cat

“cat +PL

“cat +CEN
“cat +PL +GEN
" f ox

“fox +PL

“fox +GEN
“fox +PL +GEN

4.7.9 Summary of default file names and extensions

Figure 4.15 summarizes the default file names and extensions assumed by PC-KIMMO. Two entries are given
for the different kinds of files. Thefirst is the name PC-KIMMO will assumeif no filename at al isgivento a
command that expects that kind of file. The second entry (with the *) shows what extension PC-KIMMO will
add if afile name without an extension is given.

Figure 4.15 Default file names and extensions

Rules file: RULES. RUL
* . RUL

Lexicon file: LEXI CON. LEX
*

. LEX
G amar file: GCRAMVAR. GRM
*, GRM
Ceneration conparison file: DATA. GEN
* . GEN
Recogni tion conparison file: DATA. REC
* REC
Pairs conparison file: DATA. PAI
*, PA
Synt hesi s conparison file: DATA. SYN
*. SYN
Take file: PCKI MVO. TAK
*. TAK
Log file: PCKI MVO. LOG
*, LOG

4.8 Trace formats

4.8.1 Generator trace

4.8.2 Recognizer trace

Figure 4.16 Level 1 generator trace
Figure 4.17 Level 2 generator trace
Figure 4.18 Level 3 generator trace
Figure 4.19 Level 1 recognizer trace
Figure 4.20 Level 2 recognizer trace

Figure 4.21 Level 3 recognizer trace

This section explains how to read the output of the generator and recognizer traces. Traces are produced by the
set tracing command described in section 4.5.6.1. The amount of detail shown in the trace display is set by
thetracing level. The level argument to the set tracing command can range from 0 to 3, where O is no tracing
at all and 3 isthe most detailed level of tracing.

4.8.1 Generator trace

The purpose of the generator trace isto allow the user to see how alexical form is processed through multiple
recursive calls to the generator. The generator algorithm used to process the form is described in section 4.9.1.

There are three levels of tracing differing in the amount of detail they display: Level 1 givesthe least amount of
detail, level 2 (the default) gives amoderate amount of detail, and level 3 givesthe most detail. Figure4.16isa
level 1 generator trace of the lexical form “fox+ s (taken from the English example). The only difference from
no tracing at all isthat the RESULT lineis displayed. Thisline differs from the normal result that is returned
becauseit prints all NULL symbolsin the output surface form.

Figure 4.16 Levd 1 generator trace

"fox+s
EESULT = Ofoxles

foxes

Figure 4.17 isfrom alevel 2 generator trace for the form “fox+s. To limit the size of the trace, the Gemination
rules (14 and 15) were turned off. Line numbers and column numbers are printed here for reference in the
description that follows. Each description refers to an element beginning at the line and column indicated.
Figure 4.17 Leve 2 generator trace

1 2 3 4 5 6 7 8 7 1011 12 13 14 15 16 17 18

1 “fox+s

20 ##1 1 1 1 1 1 1 1 1 1 1 1 1 11

30 ¥@.1 1= ol ol sk B oL ol sl Bl sle 1

41 £f1 1 1 1 1 1 1 2 2 111111 0

52 ool 1 1 1 2 2 1 3% 35 1 1 1 111 0f

3% =<1 1 1 1 1 1 1 7 4 2 11111 01
T4 +01 1 35 35 2 21 4 4 1 1 1 1 11 (0 fiom
25 =21 1 5 511 2 4 41111111 [im0l

e s ##1 1 6 2 2 2 3 3 4 1 1 1 1 11 0 foxda
10 &- BELOZEED BY EULE 3: Epenthesis 0:0 = [Slchlshlyi] +0__ s[+:01#]
11 5= 1 1 55112 4 4111111 0 fow0
125 =01 1 5 511 2 4 4 111111 [fiol
13 5- ELOCEED BEY EULE 7 5-delefion, 50 === +0{0:e) 5+:0"

145 oel 1 5 51 1 2 4 41 1 1 1 11 IIIfu:n:-:EI
156 31 1 1 61 1 2 4 4 111111 0 foO e
e 7 ##1 1 4 7 2 2 3 353 4 1 1 1 1 1 1 0 fomdes
17T 7 1 1 11111535 4111111 0 fomdes
12

14 EESULT = Ofoxles
a0
21 &= 1 11 & 11 2 4 4111111 0 fioO e
28 =01 1 1 &1 1 2 4 41 1 1 1 11 0 fomO e
25 B- BLOCEED BY RULE 4: Epenthesis 0:e == [Slchlshliyv:i] +:0___a[+:01#]
486 01 1 1 &1 1 2 4 4 1 1 1 1 11 0 foO e
25 6- BELOZEED BEY EULE 4: Epenthesis, 0:e == [Slchlshly:i] +:0____s[+:0#]
26 5= 1 1 55112 4 4111111 0 fow0
27 4= 1 1= F 3 2022 F 4 el ol 1 21- 1 [fio
224 00e1 1 3 3 2 21 4 4 1 1 1 1 1 1 (0 fiom
29 4. BLOCEED BY RULE 4: Epenthesis 02 == [Slchlshlyv:i] +:0___ a[+:01#]

5% o= 1 1 1 1 1 1 1 1 1 111111

400 o1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

41 0- ELOCEED BEY EULE 4: Epenthesis 0:e == [Slchlzhly:i] +:0___a[+:01]
42 fomes

e Linel: Inputline. Lexical form input to the generator function.

Line 19: RESULT line. Surface form produced by the generator function. At the point where the
input lexical form is empty and each automaton isin afina state, the trace shows that the generator has
recorded aresult. The generator continues looking for additional results (lines 21 and following).

e Column 1: Level number (all lines except 1, 19, and 42). This represents the level of recursion. Level
0 represents the initial invocation of the generator. Notice that the number coincides with the number
of charactersin the result string so far.

e Column 1: Backtracking indicator (lines 10, 11, 13). The symbol - indicates that the generator is
blocked at that level. The symbol < indicates that the generator is backtracking (that is, returning to a
lower level to try another path).

e Column 2: Input pair (lines 2-9, 12, 14-16). Thisisthe lexical:surface pair (from the set of feasible
pairs) that is currently being considered by the generator (for example, f:f on line 4). The rest of the
line shows the results of stepping the automata with the pair asinput. The results are indicated by
either anew state configuration (for example, line 5) or aBLOCKED BY RULE message (for
example, line 10).

e Lines10, 13: BLOCKED BY RULE message. Indicates that afeasible pair input to the function that
steps the automata caused aruleto fail. Gives the number and name of the rule (from the header line of
the state table) that failed.

e Columns 3-17: State configuration (lines 2-9, 11-12, 14-17). These are the current states of each of
the rules. The leftmost number is the state of rule 1, the second isrule 2, and so on.

Column 18: Result (lines 4-9, 11-12, 14-17). Thisis the current value of the result string.

Lines 21-41: The generator continues to backtrack, looking for other possible pathsto a result, until
finding no other path it returnsto itsinitial state.

There is one other tracing message not exemplified in the above display. Thisisthe END OF INPUT message.
It indicates that the end of the input form has been reached but the generator function has failed on therule
specified because it was not in afina state. For example,

END OF | NPUT, FAILED RULE 4: Pal atalization

would indicate that when the end of the input form was reached, rule 4 was not left in afinal state.

Figure 4.18 Leved 3 generator trace

1 2 3 4 5 6 7T 8 % 1011 12 13 14 15 16 17 1%
1 “fo+s
20 ##%#1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 01 1 11 11111111111
41 £f1 1 11111 2 2 111111 0
52 ool 1 1 1 2 21 3 35111111 of
&% xx1 1 1 1 1 1 1 7 4 2 11111 0fo
T4 +01 1 5 5 2 21 4 41 1 1 1 11 0 foms
25 11 5 5112 4 4111111 0 fosd
96 ##1 1 &6 2 2 2 3 35 4 1 1 1 1 11 0 fosdz
10 &- O R S 0 fomda
11 ELOCEED BEY RULE 3: Epenthesis, 0:0 == [3lchlshlvi] +:0___a[+:0#]
12 5= 1 1 5511 2 4 4111111 0 fos0
15 =01 1 5 51 1 2 4 4111111 0 foms0
14 35- I =L Lo L 1 Eloid, 2 2 220 20 2 2 PN 2 0 fosd
15 ELOCEED BY EUULE T: 5-deletion, 20 ===+ 0 {0 2+:0"
I« 5 0el 1 5 51 1 2 4 4 1 1 1 1 11 IZIfu:n:-:EI
ITe&e 331 1 1 61 1 2 4 41 1 1 1 11 0 foxde
= 7 ##1 1 4 7 2 2 3 35 4 1 1 1 1 1 1 0 fosdes
19 7 1 1 1 1 111535 4111111 Ofosles
20
21 EEZULT = Ofoxles
22
23 fomes

Figure 4.18 is part of alevel 3 trace for the same form. The level 3 trace differsfrom the level 2 tracein how it
displaysrule failures that block the generator. Compare line 10 in the level 2 trace with lines 10 and 11 of the
level 3 trace. Thelevel 3 trace explicitly shows what state the automata are in after stepping them. In line 10 of
the level 3 trace we can see that the proposed input pair puts rule 3 in state 0, which means that it fails. Notice
that the rest of the state array isfilled with question marks. Thisis because if one rule fails the whole
configuration fails, so the rest of the rules are not even tried. (This shows that even though conceptually the
automata operate in parallel they must till be stepped one at atime).

4.8.2 Recognizer trace

The purpose of the recognizer trace isto alow the user to see how a surface form is processed through
multiple recursive callsto the recognizer. The recognizer algorithm used to process the formis described in
section 4.9.1.

There are three levels of tracing differing in the amount of detail they display: level 1 givesthe least amount of
detall, level 2 (the default) gives amoderate amount of detail, and level 3 gives the most detail.

Figure 4.19 Leve 1 recognizer trace

foxes
EMTERING LEXICON IMITIAL
EMNTERING LEXICON H_FROOT
EMTERING LEXICON NUMEBEER
EMTERING LEXICON SGEHNITIWVE
EMTERING LEXICOHN End

RESULT = “fox+0z [M{fox+ PL]

BACKING UF FROM LEXICON End TO LEXICON GENITIVE
BACEING UP FROM LEXICON GEHITIWVE T LEXICOH NUMEBEEER
EHTERING LEXICON GEHITIVE

EHTERING LEXICON End

BACEING UP FROM LEXICON End TO LEXICON GEHNITIVE
BACEING UP FROM LEXICON GEHITIVE T LEXICON NUMEBEER
BACKING UF FROM LEXICON HUMBER T LEXICON N_REOOT
BACEING UP FROM LEXICON H_ROOT TO LEXICON INITIAL
EHNTERING LEXICON ADI_PREEFIX

BACEING UP FROM LEXICON W_ROOT HEG TO LEXICON 3W_PREFIX
BACEING UP FROM LEXICON W_PREEFIM TO LEXICON INITIAL
foxd+s [Mifox)+ FL]

Figure4.19isalevel 1 recognizer trace of the surface form foxes (taken from the English example). Like the
level 1 generator trace, the level 1 recognizer trace displaysthe RESULT line but does not show the feasible
pairs asthey aretried or the states of the rules. However, it does display arecord of how the recognizer moves
through the lexicon, either with an ENTERING} or aBACKING UP message.

Figure 4.20 isfrom alevel 2 recognizer trace of the form foxes. To limit the size of the trace, the Gemination
rules (14 and 15) were turned off. Line numbers and column numbers are printed here for reference in the
description that follows. Each description refers to an element beginning at the line and column indicated.

Figure 4.20 Level 2 recognizer trace

GO =1 Oh Lh P L D2

T R o O L o L L U U
e e T T O T T e e M T T T T e e

108
10%
110
111
112

1 2 3 4 5 68 F 8 9 1011 1213 14 15 18 17 13
foxes
oo#%#1 1 1 1 1 1 1 1 1 1 11 1 11
ENTEEING LEXICON INITIAL
ACCEFTIHG HULL EHTEY
ENTEEING LEAICOH H_EOOT
R L =S P N (R S s [t N - P (1 (O | S [
l1 =01 1 1 1 1 1 1 2 2 1 1 11 11 "
1- EBLOCEED EY EULE 7: S-deletion, 30 <==+0 {0 s+:0"
dE = 1151 1 I SR () e | I 15 .
2
3

- U - O | "
ood A B ok 2 2k 3 3 2k B kA sl L
Xl e I L X Gle b o4 S oL 1 Gle | “fo[
ENTEEING LEXICON HUMEEE
4 +01 1 3 3 2 2 1 4 4 1 1 1 111 “fow [H{ fom)
o SN e e e P A Sonw - S S SO P S e S “fos+ [N fom)
3- BLOCEED EY EULE T: Z-delefion, a0 <=>=+0{0:e)3+0'___
g el e ool Zlaid: & & Dl B oL ol 2l L “fow+ [M fom)
& s01 1 1 6 1 1 2 4 4 1 1 1 111 “fow+0 [M fow)
&- BLOCEED BY EULE 4: Epenthesis 0:e == [Slchizhly:i] +:0___s[+:01#]
& s 1 1 1 &6 1 1 2 4 4 1 1 1111 “fom+0 [Hifow)
ENTERING LEXICON GENITIWVE
T o+01 1 4 7 2 2 3 3 4 1 1 1111 “fos+0z [Hi fos+FL

8- BLOCEED IN LEXICON GEHITIVE, INFUT =
=1 1 4 7 2 2 3 3 4 1 1 1 1 1 1 Closs0s[H{foa)+FL
ACCEPTING HULL ENTEY
EHTERING LEXICOHN End
ACCEPTING HULL ENTEY
##1 1 4 7 2 2 3 3 4 1 1 “fos+03 [Hi fos)+FL
¥ I Zle I 2ol Sl I 5 8 Cle I &b 51 Sl B “fonc+0s [Hifox+FL

.

RESULT = *fose+ 03 [H{ fom+FL]

BACEING UF FROM LEXICON V_ROOT_NEG TO LEXICON V_PREFIX

0= 1 1 1111111111111 [
BACEING UF FROM LEXICON W_FREFIY T LEXICON INITIAL

< I e B L Qe L E 9 EL T 1

‘fomes [Hifor)+FL]

e Line1: Input line. Surface form input to the recognizer function.

e Line30: RESULT line. At the point where there are no lexicons in the continuation class of an entry,
the input surface form is empty, and each automatonisin afina state, the trace shows that the
recognizer has recorded aresult. The recognizer continues looking for additional results (lines 32 and
following).

e Column 1: Level number (lines 2, 6-11, 13-19, 21-23, 27-28). This represents the level of recursion.
Leve O represents the initia invocation of the recognizer. Notice that the number coincides with the
number of charactersin the result string so far.

e Column 1: Backtracking indicator (lines 8, 15, 18, 22-23). The symbol - indicates that the recognizer
isblocked at that level. The symbol < indicates that the recognizer is backtracking (that is, returning to

alower level to try another path).

e Column 2: Input pair (lines 2, 6-7, 9-11, and so on). Thisisthe lexical:surface pair (from the set of
feasible pairs) that is currently being considered by the recognizer (for example, f:f online 9). The
results of stepping the automata with the pair asinput are indicated by either a new state configuration
(for example, line 10) or aBLOCKED BY RULE message (for example, line 15).

e Lines3, 5, 12, 20, 25: ENTERING LEXICON message. Thisis the name of the sublexicon that the
recognizer is about to search.

e Lines4, 24, 26: ACCEPTING NULL ENTRY message. message} Indicates that anull lexical entry
(that is, an entry whose lexical item isthe NULL symbol) has been accepted.

e Line22: BLOCKED IN LEXICON message. Indicatesthat no lexical entry could be found in the
current lexicon that continues with the input pair under consideration. The remaining part of the input
formisdisplayed on theline (in line 22 it happens that nothing is left of the input form).

e Lines108, 110: BACKING UP message. Indicates that there were no further sublexiconsleft in the
continuation class, so the recognizer must back up to the previous lexicon branch.

e Lines8, 15, 18: BLOCKED BY RULE message. Indicates that afeasible pair input to the function
that steps the automata caused a rule to fail. Gives the number and name of the rule (from the header
line of the state table) that failed.

e Columns 3-17: State configuration (lines 2, 6-7, 9-11, and so on). These are the current states of each
of therules. The leftmost number is the state of rule 1, the second isrule 2, and so on.

Column 18: Result (lines 6-7 and so on). Thisisthe current value of the result string.

Lines 108-111: The recognizer continues to backtrack, looking for other possible pathsto a result,
until finding no other path it returnsto itsinitial state.

The END OF INPUT message may also occur in arecognizer trace. See section 4.8.1 on the generator trace
for an explanation of it.

Figure 4.21 Leve 3 recognizer trace

1 2 3 4 3 6 7T 8 2 1011 12 13 14 15 16 17 18

1 foxes

20 #4#1 1 1. 1111 111 1 1 1 1°:1
5 ENTEEING LEXICON INTTIAL

4 0- -0 LEHICAL CHARACTER NOT MATCHED
5 0- "0 LEXMICAL CHARACTERE NOT MATCHED
& 0- +:0 LEXICAL CHARACTERE NOT MATCHED
T 0- z0 LEXICAL CHARACTER NOT MATCHED
3 0- el LEXICAL CHARACTER NOT MATCHED
9 0- ff LEXICAL CHARACTERE NOT MATCHED
10 ACCEPTING HULL ENTREY

11 ENTEEING LEXICON H_ROOT

12 0- -0 LEXICAL CHARACTERE HOT MATCHED
e SR s O W N O SO e A S - W S O O S [
14 1- -0 LEXICAL CHARACTER HOT MATCHED
13 1- "0 LEXICAL CHARACTER HOT MATCHED
12 1- +0 LEMICAL CHARACTER HOT MATCHED
I ¥ st 3 3 F ¥ @ ¥ & @& i i kB OE Gl G ;

18 1- o O o i R O T L T T *

12 ELOCEED BEY EULE T: 3-deletion, 0 ==+ 0 (D& 3+0'____

75 ACCEPTING HULL ENTEY

e T O ##1 1 4 7 2 2 3 3 4 1 11 1 11 *fos+0s [Hi fos+FL
T T I 1 Ik F ol oL 3 04 1 G Lo ol il “fos+0s [H{ fox+FL
T8

79 EESULT = "fom+0s [H{ fom)+FL]

20

81 “foses [N{fom+FL]

Figure4.21 is part of alevel 3 tracefor the same form. Like level 3 of the generator trace, level 3 of the
recognizer trace explicitly showsthe state array when arule fails. Compare line 8 of the level 2 trace with lines
18 and 19 of the level 3 trace. In addition, the level 3 recognizer trace shows pairs that are weeded out by the
lexicon even before they are tried with the rules. Compare lines 3-4 of the level 2 trace with lines 3-10 of the
level 3trace. Inlines4-9 the level 3 trace shows explicitly several pairsthat are tried but immediately fail.
Since the recognizer is at the beginning of the input form, the only possible feasible pairsto try are those
whose surface character is0 (the NULL symbol) or f (the first character of the input form foxes). Rather than
trying each of these pairs with the rules, the recognizer first looksto seeif the lexical character of each pair
matches any lexical character availablein the sublexiconit is currently searching. In each case the match fails,
indicated by the message LEXICAL CHARACTER NOT MATCHED. After trying al the pairs, the lexicon
accepts the null entry and enters anew sublexicon. This exhaustive process takes place at each point in the
recognition process where the recognizer istrying a new pair.

4.9 Algorithms

4.9.1 The Generator
4.9.2 The Recognizer

Figure 4.22 A lexical letter tree

The algorithms used by PC-KIMMO to generate and recognize are based on descriptions in Karttunen 1983.
These algorithms pertain only to the rules and lexical components, not the word grammar component.

4.9.1 The Generator

The generator function recursively computes surface forms from alexical form using a set of two-level rules
expressed as finite state automata. The generator function does not make use of the lexicon. This meansthat it
will accept input forms that are not found in the lexicon or that even violate the lexicon's constraints on
morpheme order, and will till apply the phonological rules to them. To produce a surface form from alexical
form, the generator processes the input form one character at atime, eft to right. For each lexical character, it
tries every surface character that has been declared as corresponding to it in afeasible pair sanctioned by the
description. The generator function has these inputs:

Lexical form:
Initially the input form, this string contains whatever is |eft to process. Asthe function is recursively
called, this string gets shorter as the result string gets longer.

Result:
Initially empty, this string contains the results of the generator up to the point of the current function
call.

Rules:
Thisisthe set of active finite state automata defined for this language.

Configuration:
Thisis an array representing the current state of all rules (automata). Initially, al states are set to 1.

The generator function also uses alist of feasible pair s sanctioned by the set of rules; these are dl the
lexical:surface pairs of aphabetic characters that appear as column headers in the state tables. Theinput pair
iIsafeasible pair selected by the generator as a possible next lexical :surface pair in the process of computing a
surface form that correspondsto the given lexical for m. Each timethe generator is called it iteratively goes
through the list of feasible pairs, selecting one as the input pair.

The generator algorithm works as follows:

1. If thelexical form isempty (that is, there are no more charactersin it to process), do the following
steps:

1. If any of the state tables contains a word boundary column header, step the automata using an
input pair consisting of the BOUNDARY symbol as both the lexical and surface character. If
thisfails, then theresult isreected and the function returnsto the previous level.

2. Check that the configur ation array containsavalid final state for each of therules. If so,
then theresult is accepted and added to the output list. Otherwise, it is rejected. In either
case, the function returnsto the previous level.

Otherwise, if the lexical form is not empty (that is, it contains more characters to process), do steps 2
and 3.

2. For eachinput pair containing the first character in thelexical for m asthelexical character, do the
following steps:

1. Step the automata using the input pair and the input configur ation array, producing a new
configuration.

2. If thissucceeds, recursively call the generator function with these inputs:

Lexical form:

Thisisthe input lexical form with the first character removed.

Result:
Thisisthe input result string with the surface character from the current input pair appended.

Configuration:
Thisisthe state array produced by stepping the automata.

1. If thisfails, choose another input pair from the list of feasible pairs and do either step 2 or
step 3.

For each input pair containing the NULL symbol asthe lexical character, do the following steps:

1. Step the automata using the input pair and the input configur ation array to produce a new
configuration.

2. If thissucceeds, recursively call the generator function with these inputs:

Lexical form:
Thisistheinput lexical form with no character removed (since the lexical character posited
was NULL).

Result:
Thisisthe input result string with the surface character from the current input pair appended.

Configuration:
Thisisthe state array produced by stepping the automata.

1. If thisfails, choose another input pair from the list of feasible pairs and do either step 2 or
step 3.

4.9.2 The Recognizer

The recognizer function recursively computes lexical forms from a surface form using alexicon and a set of
two-level rules expressed asfinite state automata. The recognizer function operatesin away similar to the
generator, only in asurface to lexical direction. The recognizer processes the surface input form one character
at atime, left to right. For each surface character, it tries every lexical character that has been declared as
corresponding to it in afeasible pair sanctioned by the description.

The recognizer aso consults the lexicon. The lexical items recorded in the lexicon are structured as aletter tree.
When the recognizer tries alexical character, it moves down the branch of the letter tree that has that character
asits head node. If thereis no branch starting with that |etter, the lexicon blocks further progress and forces
the recognizer to backtrack and try a different lexical character. For example, Figure 4.22 is aletter tree for the
lexical items spiel, spit, spy, and sty.

Figure 4.22 A lexicd letter tree
e 1

L L H

Besides applying the phonological rules and identifying morphemes, the recognizer also must enforce
morpheme order constraints. The PC-KIMMO lexicon is divided into classes of lexical itemsthat behave alike
with respect to order constraints. These lexical classes are called sublexicons. The entry for each lexical item
specifies the name of the sublexicon that can follow it. This following sublexicon is called acontinuation
class. Lexical itemsthat occur only at the end of aword have no continuation class, indicated by the
BOUNDARY symbol.

The names of the sublexicons that make up the entire lexicon are used as nodes at the head of branches of the
letter tree. The piece of aletter tree shown in Figure 4.22 may actually be under a branch node called Noun.
When the recognizer successfully finds alexical item in the letter tree, it looks at its specified continuation class
and jumps to the branch of the lexicon it names.

It is often the case that at a given point in aword, more than one continuation is possible. Sets of alternative
continuing sublexicons are called alter nations. Thus the continuation class field of alexical entry may contain
the name of an alternation that specifiesalist of the sublexicons that can follow it.

When the recognizer successfully recognizes alexica item (word or morpheme), it reads its gloss from its
lexical entry and appendsit to the gl oss string being built up for the entire word.

The recognizer function has these inputs:

Surface form:
Initially the input form, this string contains whatever is |eft to process. As the function is recursively
called, this string gets shorter as the result string gets longer.

Result:
Initially empty, this string contains the results of the recognizer up to the point of the current function
call.

Gloss:
Initially empty, this string contains glosses for the lexical items contained in ther esult string.

Rules:
Thisisthe set of active finite state automata defined for this language.

Configuration:
Thisis an array representing the current state of all rules (automata). Initially, al states are set to 1.

L exicon:
Initially, thisis the entire lexicon defined for the language. During the process of recognitioniitis
restricted to a branch of the lexicon.

Like the generator, the recognizer function uses alist of feasible pair s sanctioned by the set of rules; these
are all the lexical:surface pairs of alphabetic characters that appear as column headersin the state tables. The
input pair isafeasible pair selected by the recognizer as a possible next lexical:surface pair in the process of
computing alexical form that corresponds to the given sur face for m. Each time the recognizer iscalled it
iteratively goes through the list of feasible pairs, selecting one as the input pair. When acomplete lexical item
has been recognized, the lexicon isat ater minal node of the letter tree. Terminal nodes have glosses and
continuation classes attached to them. The recognizer algorithm isinitialized as though it has successfully
recognized alexical item and the lexicon is at atermina node pointing to a continuation class consisting of the
INITIAL sublexicon. It then proceeds as follows:

1. If theinput lexicon isat aterminal node, then for each sublexicon in the continuation class of that
item, recursively call the recognizer function with these inputs:

Surface form:
This string contains whatever is |eft to process.

Result:
This string contains the results of the recognizer up to the point of the current function call.

Gloss:
Thisisthe input gloss string with the gloss of the current lexical entry appended.

Rules:
Thisisthe input set of rules.

Configuration:
Thisisthe input configuration.

L exicon:
Thisisthe current continuation sublexicon.

If the continuation class of the lexical entry isempty (that is, the lexical item can only be followed by
word boundary) and the input sur face form is empty, do the following steps:

1. If any of the state tables contains a word boundary column header, step the automata using an
input pair consisting of the BOUNDARY symbol as both the lexical and surface character. If
thisfails, then theresult isreected and the function returnsto the previous level.

2. Check that the configur ation array containsavalid final state for each of therules. If so,
then ther esult is accepted, the gloss of the lexical entry is appended to the gl oss, and both
theresult and thegl oss are added to the output list. Otherwise, ther esult isrejected. In
either case, the function returnsto the previous level.

If the continuation class of the lexical entry isempty but the surface form isnot empty, theresult is
rejected and the function returns to the previous level.

. For each input pair that has the head of a branch in the lexicon asthe lexical character and the first
character of the surface form as the surface character, do the following steps:

1. Step the automata using the input pair and the input configur ation array to produce a new
configuration.

2. If thissucceeds, recursively call the recognizer function with these inputs:

Surface form:
Thisis the input surface form with the first character removed.

Result:
Thisisthe input result string with the lexical character from the current input pair appended.

Gloss:
Thisisthe input gloss string.

Rules:
Thisisthe input set of rules.

Configuration:
Thisisthe state array produced by stepping the automata.

L exicon:
Thisisthe branch of the lexicon corresponding to the lexical character from the current input
pair.

For each input pair that has the head of abranch in the lexicon asthe lexical character and has the
NULL symbol as the surface character, do the following steps:

1. Step the automata using the input pair and the input configur ation array to produce a new
configuration.

2. If thissucceeds, recursively call the recognizer function with these inputs:

Surface form:
Thisisthe input surface form.

Result:
Thisisthe input result string with the lexical character from the current input pair appended.

Gloss:
Thisisthe input gloss string.

Rules:
Thisisthe input set of rules.

Configuration:
Thisisthe state array produced by stepping the automata.

L exicon:
Thisisthe branch of the lexicon corresponding to the lexical character from the current input
pair.

If the NULL symbol isthe head of abranch of the lexicon (that is, anull lexical entry), recursively call
the recognizer function with these inputs:

Surface form:
Thisisthe input surface form.

Result:
Thisistheinput result string.

Gloss:
Thisisthe input gloss string.

Rules:
Thisisthe input set of rules.

Configuration:
Thisistheinput state array.

L exicon:
Thisisthe branch of the lexicon which has the NULL symbol asits head.

4.10 M essages

4.10.1 Messages related to reading and parsing commands
4.10.2 Messages related to reading therulesfile
4.10.3 Messages related to reading the lexicon file

4.10.4 Messages related to reading the grammar file

4.10.5 M essages related to recognizing or generating a form

4.10.6 Messages related to memory

This section lists the various error and warning messages you may encounter. They are listed in numerical
sequence and are generally grouped according to the type of error or warning. A warning means that the
operation in progress has successfully completed, but an anomal ous condition may have resulted. An error
means that the operation in progress could not be successfully completed and was therefore prematurely
terminated. Only in the case of amemory error isthe PC-KIMMO program aborted and control returned to the
operating system. Note that in the following error messages the words printed in italics are not literal but are
cover termsfor aset of items of the type suggested by the term. For instance, when the error message
"Missing keyword in command-name command” actually appears on the computer screen, the term
command-name will be replaced by a specific command name, such asload or set.

4.10.1 Messages related to reading and parsing commands
WARNING 100 Input line too long - ignoring after first number characters
ERROR 101 Ambiguous command: command-name

command-name did not specify a unique command. Type more of the command name to
insurethat it is not ambiguous.

ERROR 102 Invalid command: command-name
command-name is not avalid command. Type ? or help for alist of valid commands.
ERROR 103 Missing keyword in command-name command

Expected a keyword to be used with the command. Type the command name followed by ?
for alist of valid keywords.

ERROR 104 Missing argument in command-name command

Expected an argument to complete the command. Type help followed by the command name
for an explanation of what arguments the command needs.

ERROR 105 Ambiguous keyword in command-name command: keyword

keyword did not specify a unique keyword. Type more of the keyword to insure that it is not
ambiguous.

ERROR 106 Invalid keyword in command-name command: keyword

keyword is not avalid keyword. Type the command name followed by ? for alist of valid
keywords for that command.

ERROR 107 Invalid argument in command-name command: argument

argument was not valid for the command. Type help followed by the command name for an
explanation of what arguments the command needs.

ERROR 108 Missing input file argument in command-name command

Expected afile name with the command.

ERROR 109 Cannot open input file filename in command-name command
Cannot find the file filename. Check to see if thefileisin the current directory or the path
you specified in the command. The command may aso be expecting adifferent default file
name or extension.

ERROR 110 Cannot open output file filename in command-name command

Check to seeiif thefileisin the current directory or in the path you specified in the command.
The command may also be expecting a different default file name or extension.

ERROR 111 Must load rules before loading lexicon

Therulesfile must be loaded before the lexicon in order to verify the lexical formsin the
lexicon against the aphabet defined in the rulesfile.

ERROR 112 TAKE files nested too deeply
TAKE files can only be nested three deep.
ERROR 113 TAKE file aborted due to invalid command: command-name
command-name is not avalid command. Type ? or help for alist of valid commands.
ERROR 114 No log file was open
Result of issuing the CLOSE command when no log file has been opened.
WARNING 115 Closing the existing log file filename
Occurs when the LOG command isissued when alog file is aready open.
ERROR 116 Missing file name for EDIT command
EDIT command must specify afile to be edited.
ERROR 117 Missing pathname for CD command
ERROR 118 Bad pathname for CD command
ERROR 119 No grammar loaded

4.10.2 Messages related to reading the rules file

ERROR 200 Rulesfile could not be opened: filename

Check to seeiif thefileisin the current directory or in the path you specified in the command.
The command may also be expecting a different default file name or extension.

ERROR 201 Unexpected end of rulesfile: filename

Therulesfileisincomplete. Check to seeif the last table in the file has fewer states than
expected.

ERROR 202 Expected ALPHABET keyword
Thefirst declaration in arulesfile must bethe ALPHABET declaration.

ERROR 203 Alphabet contains no members
The ALPHABET keyword does not have any characters listed after it.
WARNING 204 Too many characters in the al phabet
The aphabet can contain a maximum of 255 characters.
WARNING 205 Character is aready in the alphabet: character
A character has been repeated in the ALPHABET declaration.
ERROR 206 No value given for NULL keyword
A single character must appear after the NULL keyword.
ERROR 207 Vaue given for NULL symbol was already declared as aphabetic: character
The character specified for NULL may not also be declared in the ALPHABET.
ERROR 208 The NULL symbol has aready been defined
Thereis more than one NULL declaration.
ERROR 209 Value given for NULL symbol was already declared for ANY
ERROR 210 Vaue given for NULL symbol was already declared for BOUNDARY
ERROR 211 No value given for ANY keyword
A single character must appear after the ANY keyword.
ERROR 212 Vaue given for ANY symbol was aready declared as a phabetic: character
The character specified for ANY may not also be declared inthe ALPHABET.
ERROR 213 The ANY symbol has already been defined
Thereismore than one ANY declaration.
ERROR 214 Vaue given for ANY symbol was aready declared NULL
ERROR 215 Value given for ANY symbol was already declared for BOUNDARY
ERROR 216 No vaue given for BOUNDARY keyword
A single character must appear after the BOUNDARY keyword.
ERROR 217 Value given for BOUNDARY symbol was already declared as alphabetic: character
The character specified for BOUNDARY may not also be declared in the ALPHABET.
ERROR 218 The BOUNDARY symbol has aready been defined
Thereis more than one BOUNDARY declaration.
ERROR 219 Vaue given for BOUNDARY symbol was aready declared for NULL
ERROR 220 Vaue given for BOUNDARY symbol was already declared for ANY

ERROR 221 Subset name not given
Occursif thereisa SUBSET keyword with nothing after it until the next keyword.

ERROR 222 Subset name subset-name is not unique
A subset name, if it isasingle character, cannot be the same as one of the characters specified
inthe ALPHABET, NULL, ANY, or BOUNDARY declarations. If the subset name is more
than one character, then it is a duplicate of another subset name already declared.

ERROR 223 Subset subset-name contains no members

ERROR 224 Subset subset-name contains a nonal phabetic character: character
All characters used in subsets must be listed in the ALPHABET declaration, with the
exception of the NULL symbol, which can appear in a subset but is not included in the
ALPHABET list.

WARNING 225 Subset subset-name aready contains character
A character has been repeated.

ERROR 226 Invalid keyword: keyword

Theonly valid keywords in arulesfileare COMMENT, ALPHABET, NULL, ANY,
BOUNDARY, SUBSET, RULE, and END.

WARNING 227 ANY symbol not defined

Areyou surethe rulesdo not use an ANY symbol?
WARNING 228 NULL symbol not defined

Areyou sure the rules do not use aNULL symbol?
WARNING 229 BOUNDARY symbol not defined

The BOUNDARY declaration is obligatory. Even if the BOUNDARY symbol isnot used in
therulesfile, it must be used in the lexicon file.

WARNING 230 Missing closing delimiter for the name of arule: rule-name
Thefirst nonspace character after the RULE keyword is the opening delimiter of the rule
name. A matching delimiter (identical character) was not found in the same line; thus
PC-KIMMO will use everything up to the end of the line asthe rule name. Thisis because the
rule name must be contained in oneline.

ERROR 231 Invalid number of rows. number
Must be a number greater than zero.

ERROR 232 Invalid number of columns: number
Must be a number greater than zero.

ERROR 233 Invalid state number: number

State (row) numbers must start with 1 and ascend consecutively.

ERROR 234 Expected find (:) or nonfina (.) state indicator: character

A state (row) number must be followed by colon (:) or period (.) with no intervening space.
ERROR 235 State table entry out of range: number

number must not be greater than the specified number of states for the table.
ERROR 236 Lexical character not in aphabet: character

A character in atable'slexical character list is not amember of the alphabet declared earlier in
therulesfile.

ERROR 237 Surface character not in alphabet: character

A character in atable's surface character list is not amember of the alphabet declared earlier in
therulesfile.

ERROR 238 Nonnumeric character in state table: character
Expected a numeric state table entry but found a nonnumeric character.

ERROR 239 Rule number number, column number pairsaBOUNDARY symbol with something else:
column-header

Occursif acolumn header consists of a BOUNDARY symbol is paired with anything but
another BOUNDARY symbol; only #:# is allowed.

WARNING 240 No feasible pairs for this set of rules

Either there are no rulesin the file or the rules contain only subset correspondences. In the
latter case, smple ruleslisting al the default correspondences are needed.

WARNING 241 RULE number (rule-name) - char:char specified by both columns number (char:char) and
number (char:char)

There is an overlap between two columns of the state table. | ssue a show rule command for
the rule causing the warning and examine the set of pairs specified by each column header.

WARNING 242 RULE number (rule-name) - char:char not specified by any column

The entire set of feasible pairs must be specified by each table. The table is probably missing
an ANY:ANY column.

ERROR 243 Rule number number, column number pairstwo NULL symbols: column-header
NULL:NULL isnot alegal column header, since it cannot be afeasible pair.

ERROR 244 No value given for COMMENT keyword

ERROR 245 Value given for COMMENT symbol was aready declared as alphabetic: character

ERROR 246 Vaue given for COMMENT symbol was aready declared for NULL

ERROR 247 Value given for COMMENT symbol was already declared for BOUNDARY

ERROR 248 Value given for COMMENT symbol was already declared for ANY

ERROR 249 Invalid keyword for twolc rulesfiles: keyword

ERROR 250 SUBSETs not allowed in twolc rulesfile

ERROR 251 Missing opening delimiter for the name of arule

ERROR 252 No rules defined: filename

ERROR 253 Invalid column number number in aignment for correspondence pair char:char
ERROR 254 Pair occursin aignment twice: char:char

ERROR 255 Too few columnsin alignment for correspondence pair char:char

ERROR 256 Too many columnsin alignment for correspondence pair char:char

ERROR 257 RULE number (name) - no feasible pairs specified for column number

4.10.3 Messages related to reading the lexicon file

ERROR 300 Lexicon file could not be opened: filename

Check to seeiif thefileisin the current directory or in the path you specified in the command.
The command may also be expecting a different default file name or extension.

ERROR 301 No datain lexicon file filename
ERROR 302 Missing aternation name

The ALTERNATION keyword must be followed by an alternation name.
WARNING 303 Empty aternation definition: alter nation-name

An ALTERNATION keyword was found with no following alternation name or list of
lexicon names.

WARNING 304 Adding to existing aternation: alternation-name
ERROR 305 No lexicon sectionsin lexicon file filename
A lexicon file must contain sublexicons.
ERROR 306 Missing lexicon name
The keyword LEXICON must be followed by a sublexicon name.
WARNING 307 Lexicon section sublexicon-name is not listed as amember of any aternations
Thiswill not necessarily result in a processing error if thisiswhat you intended to do.
ERROR 308 Expected continuation class or BOUNDARY symbol for entry
A lexical entry is missing its continuation class element.
ERROR 309 Invalid continuation class name for entry

A name appearing in the continuation class field of alexical entry must be the name of an
ALTERNATION that has already been declared.

ERROR 310 Expected gloss e ement for entry

Each lexica entry must have a gloss element.
ERROR 311 Invalid gloss element glossfor entry

The gloss element must be bracketed by matching delimiters (identical characters).
ERROR 312 Form contains character not in alphabet: character

Each character used in lexical items must be listed in the ALPHABET declaration of the rules
file.

ERROR 313 INITIAL lexicon not found
A lexicon file must as a minimum have a sublexicon named INITIAL.
ERROR 314 Cannot nest lexicon INCLUDE files
An INCLUDE file cannot call another INCLUDE file.
ERROR 315 Missing INCLUDE file name
An INCLUDE keyword must be followed by afile name.
ERROR 316 Lexicon INCLUDE file could not be opened: filename
ERROR 317 Invalid lexicon file keyword: word

Theonly valid keywordsin alexicon fileare ALTERNATION, FEATURES, FIELDCODE,
INCLUDE, and END.

ERROR 318 Second argument in FIELDCODE lineis not valid

ERROR 319 First argument name already used

ERROR 320 Cannot use second argument category twice

ERROR 323 Ignore FIELDCODE fieldcode : no double gloss definition
ERROR 324 Expected lexical item

ERROR 325 No features

ERROR 326 Feature name already defined

ERROR 327 Feature name name not found

ERROR 328 Lexicon name aready used in alternation name

4.10.4 M essages related to reading the grammar file

ERROR 500 Grammar file filename not found
ERROR 501 Grammar file is empty
ERROR 502 Let abbreviation ... has no be

ERROR 503 No rules found in grammar

ERROR 504 Unexpected token beforetoken

ERROR 505 Token not defined by Let

ERROR 506 Let abbreviation be ... hasincompatible paths
ERROR 507 Grammar does not begin with Let or rule. It begins with: token
ERROR 509 Features of name produce FAIL

ERROR 510 Too many nonterminalsinrulerule

ERROR 511 Incompatible features name

ERROR 512 Feature name not defined by template in grammar
ERROR 513 Incompatible features on node

ERROR 516 + used in grammar rule (repetition not implemented yet).
ERROR 517 expand_psrs called with NULL delimiter.
ERROR 518 Unmatched token in the following formula:
ERROR 519 Attempt to pop_path when current_last isNULL.
ERROR 520 Label label in path not found in rule

ERROR 521 Unexpected token before token

ERROR 522 Incompatible alternatives on path path

ERROR 524 Empty path

ERROR 525 Path not followed by equd

ERROR 526 Invalid digunction

ERROR 527 structure failsto unify

ERROR 528 Non-number token after $

ERROR 529 Zero reference number number

ERROR 530 Reference number greater than number

ERROR 531 Labd name has empty path

ERROR 532 Reference $label not defined above

ERROR 533 Reference not allowed before atom

ERROR 534 Unexpected token ; Skipping to...

ERROR 535 token not defined in Let; Skipping to...

ERROR 536 End of file reached before expected ' found
ERROR 537 End of file reached before expected >' found
ERROR 538 Failure to unify < path>

ERROR 539 Let abbreviation redefined

ERROR 540 End of file reached before expected '}' found
ERROR 523 need _nonterm() not found

4.10.5 Messages related to recognizing or generating a form
WARNING 400 Surface form not found in comparison pairsfile
A lexical:surface pair in apairs comparison file is missing the surface form.
ERROR 511 Incompatible features features
ERROR 512 Feature name not defined by template in grammar
ERROR 513 Incompatible features on node
ERROR 541 Cannot parse forms without a grammar
ERROR 800 Form [form] contains character not in alphabet: character

An input form contains a character that was not listed in the ALPHABET declaration in the
rulesfile.

ERROR 801 RULE number isinvalid--input char:char is not specified by any column
Could happen if atable does not have an ANY:ANY column.
ERROR 802 Invalid lexicon for recognizer
Probably will never occur!
ERROR 803 L exicon section sublexicon-name is empty
There are no lexical entriesin the named sublexicon.
ERROR 804 Cannot recognize forms without alexicon
The lexicon is not |oaded.
ERROR 805 Cannot generate forms without rules

ERROR 806 Cannot recognize forms without rules
4.10.6 Messages related to memory
ERROR 900 Out of memory

Therulesand lexicon aretoo largeto fit in memory.

Runtime error - stack overflow

Occurs when the generator or recognizer getsinto an infinite loop due to an incorrectly written
rule or lexicon continuation.

	4.1 Introduction
	4.2 Installing PC-KIMMO
	4.3 Starting PC-KIMMO
	4.4 Interacting with the user interface
	4.5 Command reference by function
	4.6 Alphabetic list of commands
	4.7 File formats
	4.8 Trace formats
	4.9 Algorithms
	4.10 Messages

