
Chapter 1: Introduction Page: 1 of 1679847270 Monday, November 27, 1995

Chapter 1

Introduction to PC-KIMMO*
Last modified November 22, 1995

1.1 Why do morphological parsing?

1.2 The two-level model of morphology

1.3 The KIMMO parser

1.4 The PC-KIMMO parser

1.5 Unification-based word grammar

1.6 Englex: a two-level description of English morphology

1.7 Conclusion

Figure 1.1 Main components of Karttunen's KIMMO parser

Figure 1.2 Parse tree and feature structure for enlargements

Figure 1.3 Fragment of a word grammar of English

This chapter describes PC-KIMMO, a morphological parser based on Kimmo Koskenniemi's model of
two-level morphology (Koskenniemi 1983). While PC-KIMMO was adequate to decompose a word into
morphemes, it was not able directly to compute the part of speech of a derivationally complex word or return a
word's inflectional features--precisely the information required for syntactic parsing. These deficiencies have
now been remedied by adding a unification-based word grammar component to version 2 of PC-KIMMO
which can provide parse trees and feature structures. A substantial analysis of English for use with
PC-KIMMO is also described.

1.1 Why do morphological parsing?
Parsing is a standard technique used in the field of natural language processing. When you think of parsing,
you likely think of syntactic parsing. But before a syntactic parser can parse a sentence, it must be supplied
with information about each word in the sentence. For instance, to parse the sentence The cat chased the rat,
a parser must know that cat is a singular noun, chased is a past tense verb, and so on. In English, such
information may be supplied by a lexicon that simply lists all wordforms with their part of speech and
inflectional information such as number and tense. Because English has a relatively simple inflectional system,
the number of forms that must be listed in such a lexicon is manageable. Note that countable nouns such as cat
have only have two inflected forms, singular and plural, and regular verbs such as chase have only four
inflected forms: the base form, the -s form, the -ed form, and the -ing form. But an exhaustive lexical listing is
simply not feasible for many other languages, such as Finnish, Turkish, and Quechua, which may have
hundreds of inflected forms for each noun or verb. For such languages, one must build a word parser that will
use the morphological system of the language to compute the part of speech and inflectional categories of any
word.

Even for English a morphological parser may be necessary. Although English has a limited inflectional system,
it has very complex and productive derivational morphology. For example, from the root compute come

Chapter 1: Introduction Page: 2 of 1679847270 Monday, November 27, 1995

derived forms such as computer, computerize, computerization, recomputerize, noncomputerized, and so
on. It is impossible to list exhaustively in a lexicon all the derived forms (including coined terms or inventive
uses of language) that might occur in natural text.

1.2 The two-level model of morphology
A major breakthrough in the field of morphological parsing came in 1983 when Kimmo Koskenniemi, a
Finnish computer scientist, produced his dissertation Two-level morphology: A general computational model
for word-form recognition and generation (Koskenniemi 1983). Koskenniemi's model of two-level
morphology was based on the traditional distinction that linguists make between morphotactics, which
enumerates the inventory of morphemes and specifies in what order they can occur, and morphophonemics,
which accounts for alternate forms or "spellings" of morphemes according to the phonological context in
which they occur. For example, the word chased is analyzed morphotactically as the stem chase followed by
the suffix -ed. However, the addition of the suffix -ed apparently causes the loss of the final e of chase; thus
chase and chas are allomorphs or alternate forms of the same morpheme. Koskenniemi's model is "two-level"
in the sense that a word is represented as a direct, letter-for-letter correspondence between its lexical or
underlying form and its surface form. For example, the word chased is given this two-level representation
(where + is a morpheme boundary symbol and 0 is a null character):

 Lexical form: c h a s e + e d
 Surface form: c h a s 0 0 e d

For more on the phonological properties of the two-level model, see Antworth 1991.

1.3 The KIMMO parser
Shortly after Koskenniemi's dissertation appeared, Lauri Karttunen and others produced a LISP
implementation of Koskenniemi's two-level model and dubbed it KIMMO (Karttunen 1983). The main
components of the KIMMO parser are shown in Figure 1.1. It had two analytical components: the rules
component and the lexical component, or lexicon. First, the rules component consisted of two-level rules that
accounted for regular phonological or orthographic alternations, such as chase versus chas. Second, the
lexicon listed all morphemes (stems and affixes) in their lexical form and specified morphotactic constraints.
For example, the lexicon would have included lexical entries for the verb stem chase and the suffix -ed, and
would have specified their relative order. Using these data components were two processing functions, the
Generator and the Recognizer. The Generator would accept as input a lexical form such as spy+s and return
the surface form spies. The Recognizer would accept as input a surface form such as spies and return an
underlying form divided into morphemes, namely spy+s, plus a gloss string such as N+PLURAL.

Figure 1.1 Main components of Karttunen's KIMMO parser

1.4 The PC-KIMMO parser
In 1990, the Summer Institute of Linguistics produced PC-KIMMO version 1, an implementation of the

Chapter 1: Introduction Page: 3 of 1679847270 Monday, November 27, 1995

two-level model that closely followed Karttunen's KIMMO (see Antworth 1990). Written in C, it ran on
personal computers such as IBM PC compatibles and the Macintosh as well as UNIX. PC-KIMMO was quite
good at what it was designed to do--tokenize a word into a sequence of tagged morphemes. But it had a
serious deficiency: it could not directly determine the part of speech of a word or its inflectional categories. For
example, given the word enlargements, PC-KIMMO could tokenize it into the sequence of morphemes
en+large+ment+s and gloss each morpheme, but it could not determine that the entire word was a plural
noun. This meant that PC-KIMMO was not adequate to act as a morphological front end to a syntactic
parser--its most desirable application.

1.5 Unification-based word grammar
In 1993, version 2 of PC-KIMMO was developed specifically to correct this deficiency. It does so by adding a
third analytical component, a word grammar. The word grammar is a unification-based chart parser (based on
the PATR-II formalism described in Shieber 1986) that provides parse trees and feature structures. The chart
parser was originally designed for syntactic parsing. Just as a sentence parser produces a parse tree with words
as its leaf nodes, a word parser produces a parse tree with morphemes as its leaf nodes. When you parse a
sentence, it is normally already tokenized into words (since we put white space between words); but when you
parse a word, you must first tokenize it into morphemes. This tokenizing is done by the rules and lexicon.
When a surface word is submitted to PC-KIMMO's Recognizer, the rules and lexicon analyze the word into a
sequence of morpheme structures (or possibly more than one sequence if more than one analysis is found). A
morpheme structure consists of a lexical form, its gloss, its category, and its features. For example, the word
enlargements is tokenized into this sequence of morpheme structures:

 Form: en+ `large +ment +s
 Gloss: VR1+ `large +NR25 +PL
 Cat: PREFIX AJ SUFFIX INFL
 Feat: [from_pos:AJ [head: [pos:AJ]] [from_pos:V [from_pos:N
 head: [pos:V]] head: [pos:N]] head: [number:PL
 pos: N]]

This analysis is then passed to the word grammar, which returns the parse tree and feature structure shown in
Figure 1.2.

Figure 1.2 Parse tree and feature structure for enlargements

 Word
 ______|_______
 Stem INFL
 _____|______ +s
 Stem SUFFIX +PL
 ___|____ +ment
 PREFIX Stem +NR25
 en+ |
 VR1+ ROOT
 `large
 `large

 Word:
 [head: [pos: N
 number:PL]]

While each node of the tree has a feature structure associated with it, the feature structure for the top node is the
most important, since these are the features attributable to the entire word. The feature structure for the word
enlargements specifies two features. First, the feature pos has the value N , meaning that the part-of-speech
(lexical category) of the word is Noun. Second, the feature number has the value PL for plural. If
PC-KIMMO were being called from a syntactic parser, then it would return to the syntactic parser the word
enlargements with these features. In its overall architecture, version 2 of PC-KIMMO now resembles the
morphological parser described in Ritchie and others 1992. That parser also first tokenizes a word into

Chapter 1: Introduction Page: 4 of 1679847270 Monday, November 27, 1995

morphemes and then parses the morpheme sequence with a unification-based parser. However, our unification
parser differs considerably from theirs in its implementation.

The word grammar component uses a grammar file written by the user. A grammar consists of context-free
rules and feature constraints. The format of the grammar closely follows Shieber's PATR-II formalism (
Shieber 1986). Figure 1.3 shows a fragment of a word grammar of English.

Figure 1.3 Fragment of a word grammar of English

 ;FEATURE ABBREVIATIONS:

 Let pl be <head number> = PL
 LET v/n be <from_pos> = V
 <head pos> = N
 <head number> = !SG
 LET v\aj be <from_pos> = AJ
 <head pos> = V

 ;CATEGORY TEMPLATES:

 Let N be <cat> = ROOT
 <head pos> = N
 <head number> = !SG
 Let V be <cat> = ROOT
 <head pos> = V
 Let AJ be <cat> = ROOT
 <head pos> = AJ

 ;Rule 1
 Word = Stem INFL
 <Stem head pos> = <INFL from_pos>
 <Word head> = <INFL head>

 ;Rule 2
 Stem_1 = PREFIX Stem_2
 <PREFIX from_pos> = <Stem_2 head pos>
 <Stem_1 head> = <PREFIX head>

 ;Rule 3
 Stem_1 = Stem_2 SUFFIX
 <Stem_2 head pos> = <SUFFIX from_pos>
 <Stem_1 head> = <SUFFIX head>

 ;Rule 4
 Stem = ROOT
 <Stem head> = <ROOT head>

The first section of the grammar file contains feature abbreviations. Feature abbreviations can be used either in
lexical entries or in grammar rules and are expanded by "LET" statements. For example, the feature
abbreviation pl is expanded into the feature structure [head: [number: PL]].

The second section of the grammar file contains category templates. These are feature specifications that are
attached to lexical categories such as Noun and Adjective. This greatly reduces the amount of information that
must be stored in the lexicon. For example, the statement Let N be <head number> = SG means that all
nouns are assigned singular number. The grammar in Figure 1.3 actually contains the statement Let N be
<head number> = !SG. The exclamation point in !SG means that this is a default value which can be
overridden. For example, the lexical entry for fox does not need to specify that it is singular; that information is
supplied by the category definition of Noun. However, the lexical entry for mice (an irregular plural) explicitly
sets the feature number feature to PL (plural), thus overriding the default value.

The third section of the grammar file contains the word grammar rules. Associated with each rule are feature
constraints. A feature constraint consists of two feature structures which must unify with each other. Feature
constraints have two functions: they constrain the operation of a rule and they pass features from one node to

Chapter 1: Introduction Page: 5 of 1679847270 Monday, November 27, 1995

another up the parse tree. For example, in rule 1 of Figure 1.3 the feature constraint <Stem head pos> =
<INFL from_pos> requires that the pos feature of the Stem node must have the same value as the from_pos
feature of the INFL node in order for the rule to succeed, while the feature constraint <Word head> = <INFL
head> passes the values of the head features (including pos) from the INFL node to the head features of the
Word node.

The word enlargements is an especially good example of the power of the word grammar because of its
complex derivational structure. Its root is the adjective large; the prefix en- forms the verb enlarge; the suffix
-ment forms the noun enlargement; and finally the inflectional suffix s marks it plural. To accomplish this,
each root or stem has a lexical category such as Noun or Adjective and each affix has a from_pos feature and a
pos feature. The from_pos feature specifies the lexical category of the stems to which it can attach. The pos
feature specifies the lexical category of the resulting stem. For instance, the prefix en- has a from_pos of
Adjective and a pos of Verb, since it attaches to an adjective such as large and produces a verb, enlarge. Rule 2
in Figure 1.3 says that a Stem is composed of a PREFIX plus a Stem, for instance enlarge = en+large. The
first feature constraint, <PREFIX from_pos> = <Stem_2 head pos>, requires that the from_pos feature of
the PREFIX node must have the same value as the pos feature of the Stem_2 node. Since the from_pos feature
of the prefix en- and the pos feature of the stem large are both AJ, the rule succeeds. The second feature
constraint, <Stem_1 head> = <PREFIX head>, passes the value of the <head pos> feature from the
PREFIX node to the <head pos> feature of the Stem node; that is, since the <head pos> of the prefix en- is
V, the <head pos> of the resulting stem enlarge is also V.

Rule 1 in Figure 1.3 accounts for the plural suffix -s. The rule simply says that a word is composed of a stem
plus an inflectional element. The two feature constraints use the <head pos>, <from_pos>, and <pos>
features to ensure that the plural suffix attaches only to a noun stem and produces a noun word (that is, it does
not change the part of speech of the stem as do the derivational affixes).

1.6 Englex: a two-level description of English morphology
PC-KIMMO version 2 can be used with Englex, a two-level description of English morphology. Englex
consists of a set of orthographic rules, a 20,000-entry lexicon of roots and affixes, and a word grammar. With
Englex and PC-KIMMO, you can morphologically parse English words and text. Practical applications include
morphologically preprocessing text for a syntactic parser and producing morphologically tagged text (see
Antworth 1993). Englex can also be used to explore English morphological structure for purposes of linguistic
analysis.

In terms of its coverage of English, Englex has these goals:

To account for all major spelling rules of English.

To account for all productive morphological structure (affixes, morphotactic constraints, word class
conversion, and so on). While a 20,000-entry lexicon sounds small, Englex can actually recognize
many times that number of words because it analyzes productive derivational morphology. For
example, the lexicon contains entries for re-, compute, -er, -ize, and -ation and can thus recognize
any complex word formed from those parts.

To establish a critical mass of lexical entries that would handle a large percentage of non-technical,
non-specialized English text.

To provide an interface to syntactic parsing. For each input word, Englex should return its lexical
category (part-of-speech) and all syntactically relevant inflectional categories (such as number and
tense).

Englex is described in detail in chapter 3 of this guide.

1.7 Conclusion
Koskenniemi's original model of a two-level morphological parser, instantiated as PC-KIMMO version 1,
made it possible to decompose complex words into their constituent morphemes, but it lacked the ability
directly to compute the part of speech of a complex word or to return inflectional features in a form that could

Chapter 1: Introduction Page: 6 of 1679847270 Monday, November 27, 1995

easily be used by a syntactic parser. By feeding the output of the original parser into a unification-based word
grammar, version 2 of PC-KIMMO can now provide full parse trees and feature structures for handling part of
speech and inflectional categories. A substantial description of English including rules, lexicon, and word
grammar is also available for use with PC-KIMMO version 2.

*This chapter is a revision of a paper presented at:

North Texas Natural Language Processing Workshop
May 23, 1994
University of Texas at Arlington

