
Chapter 3: Englex Page: 1 of 1679847270 Monday, November 27, 1995

Chapter 3

Englex: A Computational Morphology of
English
Last modified November22, 1995

3.1 What is Englex?

3.2 Design philosophy and goals

3.3 General design features

3.3.1 Inflection and derivation
3.3.2 Multiple senses and homonyms
3.3.3 Lexical conversion
3.3.4 Compounds

3.4 The rules

3.4.1 Alphabet
3.4.2 Accented characters (diacritics)
3.4.3 Stress marks
3.4.3 Capitalization

3.5 The lexicon

3.6 The word grammar

3.6.1 Rules
3.6.2 Features and unification
3.6.3 Feature constraints
3.6.4 Interface between the lexicon and the word grammar

Figure 3.1 Positional analysis of English morphology

Figure 3.2 Finite state machine for English morphotactics

Figure 3.3 ALTERNATION declarations in main lexicon file

Figure 3.4 Key to sublexicon names

Figure 3.5 The INITIAL sublexicon

Figure 3.6 Sample prefix entries

Figure 3.7 Sample root entries

Figure 3.8 Sample suffix entries

Figure 3.9 Sample inflection entries

Chapter 3: Englex Page: 2 of 1679847270 Monday, November 27, 1995

Figure 3.10 Sample clitic entries

Figure 3.11 The End sublexicon

Figure 3.12 Context-free word grammar rules

Figure 3.13 Positional analysis of enlargement

Figure 3.14 Parse tree for enlargement

Figure 3.15 Word grammar rules with feature constraints

Figure 3.16 Parse tree and full feature display for enlargement

Figure 3.17 List of features and possible values

This chapter is an exposition of a PC-KIMMO description of English called Englex. It is intended to serve as
an extended example of how to develop a morphological description of a language with PC-KIMMO. Because
the word grammar component is new to PC-KIMMO version 2, the section in this chapter on Englex's word
grammar serves as a tutorial on writing word grammars.

3.1 What is Englex?
Englex is a description of English morphology and lexicon using the two-level model as it is implemented by
PC-KIMMO. Since it is intended to be used to do practical natural language processing, it uses the standard
orthography for English rather than phonological transcription. With Englex and PC-KIMMO (or programs
using the PC-KIMMO parser), you can morphologically parse English words and text. Practical applications
include morphologically preprocessing text for a syntactic parser and producing morphologically tagged text.
Englex can also be used to explore English morphological structure for purposes of linguistic analysis

Englex consists of the three basic components that make up any PC-KIMMO description: a set of phonological
(or orthographic) rules, a lexicon, and a word grammar. These components are described in detail in this
chapter.

Englex is a development of the sample English description described in appendix A of Antworth 1990. The
rules file (which had its origins in Karttunen and Wittenburg 1983) is largely the same, but some differences
are noted in section 3.4. The lexicon described in appendix A is only a small toy lexicon and is superseded by
Englex. Also, the morphotactic structure described in appendix A of Antworth 1990 has been completely
revised in Englex. The word grammar is of course new with version 2 of PC-KIMMO.

An earlier version of Englex, intended for use with version 1 of PC-KIMMO, was released in 1991. It is
superseded by this version of Englex which accompanies PC-KIMMO version 2.

3.2 Design philosophy and goals
Englex represents a convergence of two disciplines: natural language processing (NLP) and linguistics. Since
the presuppositions, interests, and goals of linguists and NLP researchers do not necessarily coincide, Englex
is by necessity a bundle of compromises.

Englex is natural language processing (NLP) tool based on generally-accepted linguistic principles and
analyses of English morphology. The basic strategy in building an NLP system like Englex is two-pronged:
first, ensure that all well-formed input is analyzed correctly, and second, incrementally refine the system so
that it rejects ill-formed input. Both the linguist and NLP researcher would insist that the first goal be met
(though even here the NLP researcher might be more forgiving). But with regard to the second goal, only the
linguist would require that it be fully met in order for the description to be adequate. For the NLP researcher,

Chapter 3: Englex Page: 3 of 1679847270 Monday, November 27, 1995

as long as well-formed input is assured, it does not necessarily matter if the system "overrecognizes" (but see
below).

For example, Englex will correctly recognize the comparative and superlative forms of adjectives such as big,
bigger, and biggest. But it will also recognize the dubious form aliver as the comparative form of alive. In
other words, Englex underspecifies the morphotactic constraints related to adjective inflection; it assumes that
all adjectives can have a comparative form, which of course is not true. In practice, we assume that forms such
as aliver do not occur in well-formed text; thus overrecognition does little harm.

However, overrecognition is by no means innocuous; it can result in spurious parses that seriously degrade the
performance of an NLP system. For instance, consider what would happen if we relax the constraint that the
comparative -er suffix only attaches to adjectives and permit it after any word. A word such as bigger would
still be correctly parsed as a comparative adjective; but a word such as writer would get two parses: one where
-er is correctly recognized as an agentive suffix that attaches to a verb, and another where -er is incorrectly
posited as the comparative suffix. By simply encoding the constraint that the comparative suffix can only attach
to adjectives, we capture the obvious and important linguistic fact that only adjective have comparative forms
and at the same time reduce the number of spurious parses the system produces.

The degree to which we refine a system like Englex depends on our purpose in using the system: to
characterize precisely English morphological structure (the linguist's goal) or to process natural language texts
to some acceptable degree of accuracy (the NLP researcher's goal). Englex steers a middle course between
these purposes, but ultimately it is up to the user to determine the behavior of the system.

In terms of its coverage of English, Englex has these goals:

To account for all major spelling rules of English.

To account for all productive morphological structure (affixes, morphotactic constraints, word class
conversion, and so on). While a 20,000-entry lexicon sounds small, Englex can actually recognize
many times that number of words because it analyzes productive derivational morphology. For
example, the lexicon contains entries for re-, compute, -er, -ize, and -ation and can thus recognize
any complex word formed from those parts.

To establish a critical mass of lexical entries that would handle a large percentage of non-technical,
non-specialized English text.

To provide an interface to syntactic parsing. For each input word, Englex should return its
part-of-speech and all syntactically relevant inflectional catetories (such as number and tense).

3.3 General design features

3.3.1 Inflection and derivation

Morphological processes are traditionally divided into two types: inflection and derivation. While this
distinction remains controversial among linguists (see for example Anderson 1992:73ff.), we will adopt the
widely help view that derivation produces new words (in the sense of lexemes) while inflection produces
forms of the same word. Thus the words compute, computer, computerize, recompute, recomputerize, and
so on are related by derivation since they are different words (lexemes), though based on the same root
compute. Derivational affixes often change the part-of-speech of a word (compute is a verb, computer is a
noun). They also may add semantic content (the prefix re- in recompute means "again"). In contrast, the
words compute, computes, computing, and computed are related by inflection since they are all forms of the
same word (lexeme) compute. Inflection typically encodes categories such as number, tense, gender, and case
which are relevant to syntax. This is the conclusion drawn by Anderson: "`Inflection' thus seems to be just the
morphology that is accessible to and/or manipulated by rules of the syntax" (Anderson 1992:83).

This distinction between inflection and derivation has several ramifications for building a morphological
parsing system such as Englex. First, for Englex to interface with a syntactic parser, it must provide all the
inflectional categories of a word as well as its part-of-speech. This is accomplished mainly in the word
grammar component which returns the inflectional categories and syntactic category of a word as features. For

Chapter 3: Englex Page: 4 of 1679847270 Monday, November 27, 1995

example, here are the Recognizer results returned for the words fox, (a singular noun), foxes (a regular
plural), mice (an irregular plural), and computer (a noun derived from a verb):

 `fox `fox
 [head: [number:SG
 pos: N]]

 `fox+s `fox+PL
 [head: [number:PL
 pos: N]]

 `mice `mice
 [head: [number:SG
 pos: N]]

 com`pute+er com`pute+NR
 [head: [number:SG
 pos: N]]

Each result consists of the lexical form and gloss as they are returned by the lexicon followed by the (partial)
feature structure returned by the word grammar. These points should be noted.

Each word has a pos feature standing for part-of-speech. While the part-of-speech of a simple stem
such as fox is identical to its gloss, the part-of-speech of the word computer cannot be directly
extracted from its gloss but must be inferred by the word grammar.

Since each word is a noun, it has an obligatory number feature. While the number of a regular plural
noun such as foxes is overtly marked by a suffix, the number of the other nouns is not. The word
grammar is able to provide a default value for the feature number: nouns are singular unless marked
otherwise. In the case of the irregular plural mice, it's lexical entry includes a feature that marks it as
plural.

Second, Englex must be able to recognize words formed by derivation. There are two strategies for
accomplishing this:

List all derived words (such as computer, computerize, computerization, and so on) in the lexicon.

List only roots and affixes (such as computer, +er, +ize, and +ation) in the lexicon and decompose
derived words into their constituent parts.

The second approach has several obvious advantages:

The parser will be able to recognize any word regularly derived from a root without having to list it in
the lexicon; thus by simply adding a single root entry to the lexicon, all complex words based on it
will automatically be recognized.

The lexicon will be much smaller and use much less storage space than if it listed all derived words.

It is a better model of morphological structure.

However, the decomposition approach is not without its disadvantages, the main one being that it increases the
number of spurious parses. For example, if you posit the suffix +age in order to derive baggage, acreage,
voltage, and so on from noun roots, then the system will happily tell you that cabbage is derived from cab.
The problem is that +age is not a very productive suffix and the number of attested words that use it are far
fewer than the number of potential but unattested words that use it. In such cases, it is usually better to
compromise and simply list all the attested words with the unproductive suffix in the lexicon. However, if you
desire, the word grammar does give you the power to limit the collocational behavior of even a single affix like
+age by simply requiring that it can only attach to roots that bear a feature that means "takes the suffix +age."
The decomposition approach to derivational morphology engenders several other problems.

Chapter 3: Englex Page: 5 of 1679847270 Monday, November 27, 1995

Many morphologically derived forms cannot be decomposed due to phonological or morphological
irregularity. For example, the word reception is clearly derived from the verb root receive plus the
nominalizing suffix -tion; other words exemplifying this pattern include deceive/deception,
conceive/conception, perceive/perception, and so on. While in principle it is possible to write
two-level phonological rules to relate the forms ceive and cep, in practice it is not feasible for two
reasons: the phonological distance between the forms is so great that the rules would be very complex,
and the rules apply only to a small number of words. The better solution is simply to list derived
forms such as reception in the lexicon, even though the morphological relationship between receive
and reception is no longer captured by the lexicon. However, the derivational source of a word such
as reception can be recorded in the lexicon by giving it a gloss such as V(re`ceive)+NR.

Many regularly derived words in English have acquired specialized meanings. For example, the word
business is a regular nominal derivation of the verb busy, but no longer retains its transparent
meaning of "state of being busy." In such cases, it may be desireable to list such words in the lexicon.
Thus business would return two parses: ̀ business N and `busy+ness AJ+NR. The problem then
becomes deciding which derived words to list and which not to list. A great many nominalized verbs
in English have both a transparent meaning and an extended meaning; for instance, government can
mean "the act of governing" or it can refer to a particular political institution. Englex has taken a
conservative course and lists very few derived forms.

It is not easy to draw a sharp line between productive, synchronic formations and static, diachronic
formations. For example, the adjective resilient is actually derived from the verb resile. Even though
the semantic relation is perfectly transparent, the fact that resile is no longer in wide currency may put
this analysis more in the arena of etymology.

3.3.2 Multiple senses and homonyms

Englex's lexicon is a parsing lexicon, not a full dictionary. In general, multiple senses of words are not
distinguished. For example, there is only one entry for the adjective fair, ignoring the fact that it has several
senses (including "not stormy", "impartial" and "light-colored"). However the noun fair meaning "a festival"
is considered a homonym and because it is a different part-of-speech it is given its own entry in the noun
sublexicon. There are also instances of homonyms of the same part-of-speech; for instance, bat in the sense
"instrument for hitting" and bat in the sense "flying mammal." Note that these two words have different
derivational possibilities: the first can be converted to a verb while the second cannot. Nevertheless, bat is
given only one lexical entry.

The larger issue is how to incorporate semantic information in a PC-KIMMO lexicon. While PC-KIMMO
doesn't support a semantics field in lexical entries, there are other ways you can include semantic information
in entries.

You can place semantic information in the features field; for example, features for semantic categories
such as animate, human, and so on.

You can use glosses that encode semantic information.

You can include a user-defined semantics field in lexical entries, while it would be ignored by
PC-KIMMO, it would be accessible to other software.

3.3.3 Lexical conversion

Many words in English belong to more than one part-of-speech; for instance, the word ride can be either verb
or noun. Since the verb ride and the noun ride appear to have the same sense, they are derivationally related.
The relation between them is often described as zero derivation or conversion. In contrast, the verb shed and
the noun shed have unrelated senses and thus are not derivationally related, by merely homonyms. Clearly
homonyms such as verb shed and noun shed should receive separate lexical entries since they have no lexical
relation to each other. But if you posit separate lexical entries for words related by lexical conversion, you
would not only lose the linguistic generalization that such words are lexically related but you would also
greatly increase the size of the lexicon, since English has a very large number of such words. Englex handles
lexical conversion by positing special sublexicons such as N-V for words that occur as both noun and verb. A

Chapter 3: Englex Page: 6 of 1679847270 Monday, November 27, 1995

word belonging to the N-V sublexicon is expanded into both a noun and a verb by the word grammar. For
example, here is the Recognizer results for the input word hope (trees are not shown):

 `hope `hope
 [head: [finite:-
 pos: V]]

 [clitic:-
 head: [number:SG
 pos: N]]

The lexicon returns the single lexical form `hope, but the word grammar returns two results, one where hope
is a verb and another where it is a noun. The direction of lexical conversion can be distinctive. Examples of
verb to noun conversion include love, laugh, answer, cover, and walk, while examples of noun to verb
conversion include bottle, grease, peel, and father. However, it is often difficult or arbitrary to determine the
direction of conversion of related words. Englex does not require the analyst to decide the direction of
conversion. In the results above for the word hope, there is nothing that indicates whether hope is basically a
verb or a noun. However, the lexical entry for hope is found in the file containing verbs, reflecting the
analyst's decision that it is basically a verb.

When adding new lexical entries, you should take the possibility of conversion into consideration. For
example, say you find that Englex fails to recognize the inflected verb partied. Before adding party to the file
of verb entries, first check to see if party already exists in the file of noun entries. If it does, then you need
only to change its sublexicon from N to N-V.

For a discussion of lexical conversion in English, see Quirk and others 1972:1009ff.

3.3.4 Compounds

There are three types of orthographic compounds in english (see Quirk and others 1972:1019):

solid, e.g. bedroom

hyphenated, e.g. moth-eaten

open, e.g. rose bush

Open compounds are not handled by Englex at all. If you want to treat open compounds as single lexical items,
you must preprocess the text to join them as either hyphenated or solid compounds (for instance, replace rose
bush with rose-bush or rosebush and put these forms in the lexicon).

Englex can handle hyphenated compounds. If it recognizes a whole word and then encounters a hyphen, it will
recurse and attempt to recognize the part after the hyphen as another word. It will even handle phrasal
compounds this way, such as his come-what-may attitude. If you do not want to decompose hyphenated
compounds, find the End sublexicon near the bottom of the file ENGLISH.LEX and comment out the hyphen
entry.

Englex treats solid hyphens as if they were indivisible stems; they are simply listed in the lexicon. It should be
possible to cause Englex to decompose solid compounds by using a null lexical entry in the End sublexicon.
However, a large number of spurious parses would likely result.

3.4 The rules
Englex's rules component covers most of the spelling alternations that were described in appendix A of
Antworth 1990. Rather than repeat that discussion here, you are referred to that work. However, a few
changes in the rules file should be noted here.

The environment of the Gemination rule has been relaxed. Formerly, Gemination was not permitted in an
unstressed syllable; for instance, traveling was permitted but not travelling. To accomodate common British

Chapter 3: Englex Page: 7 of 1679847270 Monday, November 27, 1995

usage, either form is now permitted.

The s-deletion and i:y-spelling rules described in appendix A of Antworth 1990 are not used in Englex. This
was done to achieve better processing performance. Because deletions are computationally expensive for the
recognizer function, removing the s-deletion rule resulted in nearly a 20% speed increase. Removing the
i:y-spelling rule resulted in a 10% speed increase. The trade-off is that there is some loss in linguistic felicity.
The s-deletion rule deletes a possessive suffix s when it follows an s, for example lexical boy+s+'s to surface
boys'. In order to do away with this rule, it is necessary to add the allomorph +' to the GENITIVE sublexicon
(in the file english.lex). The result is that a word such as boys' returns the lexical form boy+s+' rather than
boy+s+'s; however, the gloss string is unaffected and remains N+PL+GEN. If you prefer to use the
s-deletion rule, it is located in the file ENGLISH.RUL after the END keyword. Simply move it into the main
body of rules and comment out the +' lexical entry in the file AFFIX.LEX.

The i:y-spelling rule accounts for alternations such as tie and tying. However, there is such a small number of
words that exhibit this alternation that it is more economical to list them in the lexicon. If you want to restore
the i:y-spelling rule, it is located in the file ENGLISH.RUL after the END keyword.

Hyphens are handled differently now. The problem is in handling prefixes such as re which can optionally be
followed by a hyphen, as in retry or re-try. Formerly, this prefix was given two lexical entries: re+ and re-+.
This required that -:0 be admitted as a feasible pair (an unrestricted deletion of a lexical hyphen). There are two
problems with this solution. First, it requires that a great many prefixes have two lexical entries. And second, a
deletion correspondence such as -:0 is costly, since the Recognizer will spend a lot of time trying it
everywhere. The present solution is to posit a single lexical entry for prefixes without a hyphen, for instance
re+, and to replace the -:0 pair with +:-. Since a -:- pair is independently necessary for certain hyphenated
words, the rules will recognize either retry or re-try and return the lexical form re+try. The only drawback to
this solution is that it causes the Generator to produce spurious forms; for instance, the lexical form `fox+s
will produce both the correct surface form foxes and the spurious form fox-s. Thus in its present form, Englex
is optimized for recognition and is not very useful for generation. However, if you want to use the generation
function with Englex's rules, simply open a copy of the file ENGLISH.RUL, find the +:- pair in the first table
of default pairs, and change it to -:0.

3.4.1 Alphabet

The alphabet of word-forming characters is declared in the file ENGLISH.RUL. It consists of these characters:

 b c d f g h j k l m n p q r s t v w x y z a e i o u ' - ` + .
 B C D F G H J K L M N P Q R S T V W X Y Z A E I O U

Only these characters can be used in the lexical form part of a lexical entry. The gloss part of a lexical entry is
not restricted to these characters. Accented characters and punctuation in input data must be handled by
preprocessing software.

3.4.2 Accented characters (diacritics)

Englex's alphabet does not include accented characters (characters with diacritics). English words usually
spelled with diacritics are given lexical forms without them. For instance, the word naïveté is usually spelled
with a diaeresis over the i and an acute accent over the final e; but the lexical entry for naïveté is spelled
naivete with no diacritics. This is done for reasons of economy and portability. While PC-KIMMO can handle
eight-bit accented characters such as ï and é, every character added to the alphabet slightly increases processing
time. Also, the ASCII code for the character é on an IBM-compatible PC is not the same code on the
Macintosh; thus you would have to maintain several versions of the rules file for different computing
platforms.

If your input data contains accented characters, they must be converted to corresponding unaccented characters
before processing by the rules. Otherwise, if you prefer to use accented characters directly, then add them to
the alphabet in ENGLISH.RUL and use them in the lexical entries.

3.4.3 Stress marks

Chapter 3: Englex Page: 8 of 1679847270 Monday, November 27, 1995

Word stress in full words is indicated with the back quote (grave accent) `. Be careful not to confuse it with
apostrophe; for instance, the lexical form of the word woman's is written ̀ woman+'s. The stress marks were
placed according to intuition and the authority of Webster's Ninth New Collegiate Dictionary. Notice that even
monosyllabic words require a stress mark because the Gemination rule crucially refers to it (see the file
ENGLISH.RUL and appendix A of Antworth 1990).

3.4.4 Capitalization

Englex now handles words with lexical capitalization, e.g. proper nouns. Lexical capitalization is distinct from
orthographic capitalization. For words such as September and France, capitalization is part of their lexical
form. Thus May, the month, can be distinguished from may, the modal. Also, many acronyms have lexical
capitalization, such as IBM and NATO. Orthographic capitalization refers to sentence-initial capitalization or
use of all-caps for emphasis. Englex does not handle these cases; they must be handled with preprocessing.

3.5 The lexicon
Englex's lexicon contains approximately 20,000 lexical entries. These entries are affixes, roots, indivisible
stems and solid compounds. Of these, there are approximately 11,000 nouns, 4,000 verbs, and 3,400
adjectives. Since Englex analyzes productive morphology, it will recognize several times this number of
English words. The lexicon is contained in the following files:

 english.lex main lexicon file (loads other files)
 affix.lex affixes
 noun.lex nouns
 verb.lex verbs
 adjectiv.lex adjectives
 adverb.lex adverbs
 minor.lex prepositions, determiners, conjunctions, quantifiers,
 demonstratives, interjections, ordinals, cardinals

The following files may be optionally loaded

 proper.lex proper nouns
 abbrev.lex acronyms and abbreviations
 technica.lex technical terms
 foreign.lex foreign words and phrases
 natural.lex fauna, flora, etc.

At the beginning of each file is a table of contents. In the noun, verb, and adjective files, irregular forms are
listed in the first part of the file followed by regular forms. Morphotactic constraints are found in two places in
Englex: the lexicon and the word grammar. The general strategy is to balance the morphotactic description
between the two components without making either one overly complex. The lexicon has a strictly "beads on a
string" view of morphotactics. Its main job is to decompose a word into a sequence of morphemes using a
simple positional analysis (see pp. 106ff. of Antworth 1990). The positional analysis need only go far enough
to ensure that all correct parses are produced but not too many incorrect parses (what counts as "too many" is
left to the judgment of the analyst and the practical behavior of the system). Cooccurrence restrictions between
morpheme positions are best handled in the word grammar, not the lexicon.

The positional analysis used in Englex's lexicon is very simple. First, some words are particles that never bear
affixes; these include pronouns, prepositions, and conjunctions. Second, words that may bear affixes have this
structure shown in figure 3.1.

Figure 3.1 Positional analysis of English morphology

 Prefix* Root Suffix* (Infl) (Clitic)

In this notation, parentheses indicate an optional element, and an asterisk (Kleene star) indicates zero or more
occurrences of an element. Thus a word consists of an obligatory root (or indivisible stem) preceded by zero or

Chapter 3: Englex Page: 9 of 1679847270 Monday, November 27, 1995

more prefixes and followed by zero or more suffixes. This accounts for all derivational structure. Following a
derivational stem is an optional slot for an inflectional suffix and an optional slot for a clitic. Since
PC-KIMMO's lexicon implements morphotactic constraints as finite state machines, this positional analysis
can be expressed as the finite state machine digrammed in figure 3.2. Note that the Prefix and Suffix loops
permit any number of prefixes or suffixes.

Figure 3.2 Finite state machine for English morphotactics
[missing]

This obviously is a rather coarse analysis of morphotactic structure, and as such greatly overrecognizes. While
it enforces the relative order of prefixes, roots, and suffixes, it does not enforce any order among prefixes or
suffixes. For example, it will analyze the non-word *computizer into the parts com`pute+ize+er (reversing
the order of the suffixes produces the real word computerize). However, this incorrect parse would be filtered
out by the word grammar, which knows that the suffix +ize can only attach to a noun stem. Of course, in
practical use the system should never encounter a form such as *computizer since input is assumed to be valid
English words.

The important point to note in this discussion is that the morphotactic contraints in the lexicon do not enforce
any cooccurrence restrictions among the positional morpheme slots; rather, this is done by the word grammar.
For example, the lexicon will return two analyses for the word foxes: the root fox followed either by the plural
suffix +s or the verbal suffix +s. Assuming that fox only occurs as a noun, the word grammar will discard the
second analysis and keep the first. In this simple case, it seems like it would be more efficient to expand the
positional analysis of the lexicon so that it would distinguish noun and verb roots, which could be followed
only by the inflectional suffixes appropriate to them. The problem comes with a word such as enlarges, which
consists of the verbalizing prefix en+, the adjective root large, and the verb suffix +s. If the verb suffix +s is
constrained to follow only a verb root, then the word enlarges would be rejected, since large is an adjective.
This result is due to the finite state basis of PC-KIMMO's morphotactics: for a given morpheme, you can only
state what can follow it. You cannot know that large has been preceded by a verbalizing prefix and thus is
eligible to take a verbal suffix. The only solution would be two specify two paths through the adjective
sublexicon: one which first takes the verbalizing prefix, and one which doesn't. Unfortunately, this would
entail physically duplicating the entire adjective sublexicon--not a very practical solution. The better solution is
to let the lexicon recognize a verbal suffix wherever it can and let the word grammar filter out the incorrect
results.

The morphotactic analysis shown in figures 3.1 and 3.2 is implemented in Englex using ALTERNATION
declarations in the main lexicon file (ENGLISH.LEX). Figure 3.3 shows these alternations, while figure 3.4
is a key to the abbreviations for the sublexicon names used in the alternations. The alternation name stands for
a positional slot (as in figure 3.1), while the sublexicon names stand for the classes of lexical items that can fill
that slot. The Particle alternation lists all the sublexicons of words that do not accept affixes, such as
auxiliaries, prepositions, and determiners. The Prefix alternation stands for the Prefix slot in figure 3.1, the
first possible slot in a complex word. Recall that a PC-KIMMO lexicon must start with an INITIAL
sublexicon. Figure 3.5 shows that the INITIAL sublexicon in Englex contains just two null entries, one for the
Particle alternation and one for the Prefix alternation. The purpose of these entries is to provide the initial two
entry points into the lexicon system. Note that the gloss field of a null entries must be empty.

Figure 3.3 ALTERNATION declarations in main lexicon file

 ALTERNATION Particle AUX AUX-V PP CJ PP-CJ DT PR DT-PR IJ
 ALTERNATION Prefix PREFIX
 ALTERNATION Root N AJ V AV N-V N-AJ AJ-V AJ-AV CD OD
 ALTERNATION Suffix SUFFIX
 ALTERNATION Infl INFL
 ALTERNATION PN_Suffix PN_SUFF ;proper nouns
 ALTERNATION Y_Suffix Y_SUFF
 ALTERNATION IC_Suffix IC_SUFF
 ALTERNATION PT_Suffix PT_SUFF ;participles
 ALTERNATION Clitic GEN CNTR End
 ALTERNATION Contraction CNTR End
 ALTERNATION CD CD OD ORDR ;cardinals and ordinals
 ALTERNATION Compound INITIAL
 ALTERNATION End End

Chapter 3: Englex Page: 10 of 1679847270 Monday, November 27, 1995

Figure 3.4 Key to sublexicon names

 INITIAL initial sublexicon
 End final sublexicon
 AUX auxiliary
 PP preposition
 DT determiner
 PR pronoun
 CJ conjunction
 IJ interjection
 N noun
 AJ adjective
 V verb
 CD cardinal
 OD ordinal
 AV adverb
 N-V noun-verb
 N-AJ noun-adjective
 AJ-V adjective-verb
 AJ-AV adjective-adverb
 DT-PR determiner-pronoun
 PREFIX prefix
 SUFFIX suffix
 INFL inflection
 GEN genitive
 ORDR ordinalizer
 PN_SUFF proper noun suffix
 Y_SUFF suffixes on final-y words
 IC_SUFF suffixes on final-ic words
 PT_SUFF participle suffixes
 CNTR contractions

Figure 3.5 The INITIAL sublexicon

 \lf 0
 \lx INITIAL
 \alt Particle
 \gl

 \lf 0
 \lx INITIAL
 \alt Prefix
 \gl

The Prefix slot can be filled by zero or more prefixes from the PREFIX sublexicon. Figure 3.6 shows three
sample prefix entries. The first is a null entry whose alternation field names the Root alternation; this permits
the prefix slot to be optional. The other two entries specify the Prefix alternation; thus if a prefix is recognized,
the system keeps looping through the PREFIX sublexicon.

Figure 3.6 Sample prefix entries

 \lf 0
 \lx PREFIX
 \alt Root
 \gl

 \lf non+
 \lx PREFIX
 \alt Prefix
 \gl NEG3+

Chapter 3: Englex Page: 11 of 1679847270 Monday, November 27, 1995

 \lf pseudo+
 \lx PREFIX
 \alt Prefix
 \gl PEJ3+

The Root alternation stands for the Root slot in figure 3.1 which can be filled by a root sublexicon such as
noun, verb, or adjective. Figure 3.7 shows several sample lexical entries for roots. The Root slot is obligatory,
so there are no null entries in any of the root sublexicons. Three of these entries, fox, carry, and happy, are
morphologically regular roots. Their alternation fields name Suffix, indicating that they may take derivational
suffixes. The other three entries, mice, began, and worse, are irregular inflected forms. Their alternation fields
name Clitic, the final positional slot shown in figure 3.1; this reflects the fact that, as inflected forms, they
cannot be further affixed. The features field of each of these irregular forms contains feature abbreviations that
convey inflectional information to the word grammar. For example, the features field for mice includes the
abbreviation pl, which the word grammar will expand into the feature structure [number: PL], The gloss field
of each irregular form specifies the root on which the inflected form is based (thus mice is an inflected form of
mouse).

Figure 3.7 Sample root entries

 \lf `fox
 \lx N
 \alt Suffix
 \gl

 \lf `mice
 \lx N
 \alt Clitic
 \fea pl irreg
 \gl `mouse

 \lf `carry
 \lx V
 \alt Suffix
 \gl

 \lf be`gan
 \lx V
 \alt Clitic
 \fea ed irreg
 \gl be`gin

 \lf `happy
 \lx AJ
 \alt Suffix
 \gl

 \lf `worse
 \lx AJ-AV
 \alt Suffix
 \fea comp
 \gl `bad

The Suffix slot can be filled by zero or more suffixes from the SUFFIX sublexicon. Figure 3.8 shows three
sample suffix entries. The first is a null entry whose alternation field names the Infl alternation; this permits the
suffix slot to be optional. The other three entries specify the Suffix alternation; thus if a suffix is recognized,
the system keeps looping through the SUFFIX sublexicon. The features field of these three entries contains
feature abbreviations that will convey morphotactic information about the suffixes to the word grammar. For
example, the abbreviation aj/n in the features field for +ness indicates that it attaches to an adjective and
produces a noun, such as happiness.

Figure 3.8 Sample suffix entries

Chapter 3: Englex Page: 12 of 1679847270 Monday, November 27, 1995

 \lf 0
 \lx SUFFIX
 \alt Infl
 \gl

 \lf +ism
 \lx SUFFIX
 \alt Suffix
 \fea n/n
 \gl +NR8

 \lf +ness
 \lx SUFFIX
 \alt Suffix
 \fea aj/n
 \gl +NR27

 \lf +ize
 \lx SUFFIX
 \alt Suffix
 \fea n/v
 \gl +VR6

TheInfl slot is filled by a suffix from the INFL sublexicon. Figure 3.9 shows three sample INFL entries. The
first is a null entry whose alternation field names the Clitic alternation; this permits the Infl slot to be optional.
The other three entries also specify the Clitic alternation; thus in contrast with the Prefix and Suffix slots, only
one inflectional suffix is allowed. The features field of these three entries contains feature abbreviations that
will convey morphotactic information about the inflectional suffixes to the word grammar.

Figure 3.9 Sample inflection entries

 \lf 0
 \lx INFL
 \alt Clitic
 \gl

 ;noun plural
 \lf +s
 \lx INFL
 \alt Clitic
 \fea n/n pl reg
 \gl +PL

 ;adjective comparative
 \lf +er
 \lx INFL
 \alt Clitic
 \fea aj/aj comp reg
 \gl +CMP

 ;verb past tense
 \lf +ed
 \lx INFL
 \alt Clitic
 \fea v/v ed reg
 \gl +ED

The Clitic slot is filled by a form from the CLITIC sublexicon. Figure 3.10 shows three sample clitic entries.
The first is a null entry whose alternation field names the End alternation; this permits the Clitic slot to be
optional. The other three entries also specify the End alternation; thus only one clitic is allowed. The features
field of these three entries contains feature abbreviations that will convey morphotactic information about the
inflectional suffixes to the word grammar.

Chapter 3: Englex Page: 13 of 1679847270 Monday, November 27, 1995

Clitics are distinguished from affixes. Affixes are constrained in what word classes they can attach to; for
instance, the plural suffix +s can only attach to a noun. Clitics, however, are syntactically bound to phrases
but phonologically bound to the last word of the phrase; thus they are not constrained by the words they attach
to. For instance, the possessive clitic +'s normally attaches to nouns as in the man's hat, but can attach to
other word classes such as adjectives in a phrase such as the president elect's hat. Also handled as clitics in
Englex are contracted forms such as +'ll for will , +'d for would, and +'ve for have.

Figure 3.10 Sample clitic entries

 \lf +'s
 \lx GEN
 \alt End
 \fea gen
 \gl +GEN

 \lf +'d've
 \lx CNTR
 \alt End
 \fea modal -3sg
 \gl +would+have

The End alternation points to the End sublexicon which contains the two entries shown in figure 3.11 (note
that spelling the sublexicon name END would conflict with the keyword END that indicates the end of the main
lexicon file). The first entry is a null entry that simply points to the word boundary symbol #, thus ending the
word. The second entry, however, handles hyphenated compounds such as rose-bush, well-formed,
fast-acting, moth-eaten, water-repellent, and machine-readable (see also section 3.3.4 on compounds). It
works like this. Given an input form such as machine-readable, the Recognizer will first recognize machine;
since that is a whole word, it will enter the End sublexicon, where it matches the hyphen and takes the
Compound alternation. The Compound alternation (shown in figure 3.3) causes the Recognizer to go back to
the INITIAL sublexicon and start all over again. After successfully recognizing readable, it again comes to the
End sublexicon, where it terminates. If you do not want Englex to attempt to decompose hyphenated
compounds, then simply comment out the hyphen entry in the End sublexicon.

Figure 3.11 The End sublexicon

 \lf -
 \lx End
 \alt Compound
 \fea compound
 \gl -

 \lf 0
 \lx End
 \alt #
 \gl

3.6 The word grammar
Englex's word grammar is contained in the file ENGLISH.GRM (see section 4.7.3 for a reference guide to the
word grammar file). The grammar file has three main parts: feature templates and rules.

3.6.1 Rules

The heart of the grammar is of course the rules. Figure 3.12 shows the major rules used in Englex's word
grammar.

Figure 3.12 Context-free word grammar rules

 Word = Word CLITIC

Chapter 3: Englex Page: 14 of 1679847270 Monday, November 27, 1995

 Word = PARTICLE

 Word = Stem (INFL)

 Stem = PREFIX Stem

 Stem = Stem SUFFIX

 Stem = ROOT

The grammar uses context-free rules consisting of a nonterminal symbol on the left side of the rule which is
expanded into one or more symbols on the right side. The symbols on the right can be either terminal or
nonterminal symbols. In figure 3.12, Word and Stem are nonterminal symbols, while CLITIC, PARTICLE,
PREFIX, SUFFIX, and ROOT (writtin in all caps) are terminal symbols. The grammar must have a single
"start" symbol; in this case it is Word. The rules in figure 3.12 define a simple and familiar word structure. A
Word may be (1) a Word plus a CLITIC; (2) a PARTICLE (an unaffixable word); or (3) a Stem plus an
optional INFL (inflection) element. Stem is a nonterminal symbol and thus requires further expansion. A Stem
may be (1) a PREFIX plus a Stem; or (3) a Stem plus a SUFFIX; or (3) a ROOT. Notice the congruence
between this analysis and the positional analysis used in the lexicon (see figures 3.1 and 3.2 above). Both use
the categories CLITIC, PARTICLE, PREFIX, SUFFIX, and ROOT; the difference is that the positional
analysis is strictly linear, while the word grammar analysis imposes a branching tree structure on words. For
example, this is the positional analysis of the word enlargement:

Figure 3.13 Positional analysis of enlargement

 PREFIX ROOT SUFFIX
 en+ large +ment

and this is the structure produced by the word grammar:

Figure 3.14 Parse tree for enlargement

 Word
 |
 Stem
 _____|______
 Stem SUFFIX
 __|___ +ment
 PREFIX Stem
 en+ |
 ROOT
 large

The tree structure shows that the word enlargement is composed of the stem enlarge plus the suffix +ment,
and the stem enlarge in turn is composed of the prefix en+ plus the root large. The context-free grammar in
figure 3.12, while an improvement over the simple positional analysis, still has several deficiencies. First, it
does not tell us the part-of-speech of a word; note that the tree in figure 3.14 does not reveal that the word
enlargement is a noun. Second, it still does not adequately characterize important morphotactic constraints.
For example, it would also return an analysis of the word enlargement with it bracketed as [en+ [large
+ment]]. This of course is an incorrect analysis since it posits the nonexistent stem largement. The analysis
still does not capture the fact that a suffix such as +ment can attach to verb stems only.

One way to remedy this problem is to introduce more category symbols into the rules. For example, these rules
would recognize the words large, enlarge, and enlargement while rejecting the nonword largement:

 Word = Noun

 Word = Adjective

Chapter 3: Englex Page: 15 of 1679847270 Monday, November 27, 1995

 Word = Verb

 Verb = VerbPrefix Adjective

 Noun = Verb NounSuffix

However, this approach will quickly result in a grammar with a great many confusing rules which still may not
adequately handle the data. PC-KIMMO remedies this problem by augmenting the context-free rules with
feature structures. In this approach, the categories used in rules are not just simple labels, but represent
complex feature structures. Associated with each rule are feature constraints which are satified by using an
operation called unification. Thus PC-KIMMO's word grammar component is a type of grammar formalism
called a unification grammar. Its implementation closely follows the PATR-II grammar described in Shieber
1986. Before demonstrating how to use feature constraints, we must first review the basics of feature
structures and unification.

3.6.2 Features and unification

A feature structure consists of a feature name and a value. The notation used for feature structures looks like
this:

 [number: singular]

where number is the feature name and singular is the value, separated by a colon. A structure containing more
than one feature uses square brackets around the entire stucture:

 [number: singular
 case: nominative]

Feature structures can have either simple values, such as the example above, or complex values, such as this:

 [agreement: [number: singular]]

where the value of the agreement feature is another feature structure. Feature structures can be infinitely nested
in this manner. Portions of a feature structure can be referred to using the "path" notation. A path is a sequence
of feature names (minimally one) enclosed in angled brackets (<>). For example, consider this feature
structure:

 [agreement: [number: singular
 case: nominative]]

These are feature paths based on this structure:

 <number>
 <case>
 <agreement number>
 <agreement case>

Paths are used in feature templates and feature constraints, described below. Feature structures are manupilated
using an operation called unification. Two feature structures can unify if none of their constituent features
have conflicting values; the resulting structure is a union of all their features. For example, feature structures
(a) and (b) unify as (c):

 (a) [a: P
 b: Q]

 (b) [b: Q

Chapter 3: Englex Page: 16 of 1679847270 Monday, November 27, 1995

 c: R]

 (c) [a: P
 b: Q
 c: R]

But feature structures (d) and (e) fail to unify because they have conflicting values for the q feature:

 (d) [a: P
 b: Q]

 (e) [b: S
 c: R]

3.6.3 Feature constraints

Figure 3.15 shows the rules from figure 3.12 with some feature constraints attached to each rule. A feature
constraint consists of two feature paths separated by an equals sign. The feature paths refer to features of rule
categories; thus <PREFIX from_pos> refers to the from_pos feature of the PREFIX category and <Stem_1
pos> refers to the pos feature of the Stem_1 category. (Note that subscripts are used to distinguish multiple
instances of a symbol in a rule (for instance, Word_1 and Word_2 in the first rule). In order for a feature
constraint to succeed, the values referred to by the feature paths must unify with each other. Note that, in spite
of the equals sign, unification is not the same thing as saying that the values must be the same. For example, a
feature constraint that referred to the feature structures in (a) and (b) in the section above would succeed, since
they unify--even though they are not identical.

Figure 3.15 Word grammar rules with feature constraints

 Word_1 = Word_2 CLITIC
 <Word_1 pos> = <Word_2 pos>

 Word = PARTICLE
 <Word pos> = <PARTICLE pos>

 Word = Stem
 <Word pos> = <Stem pos>

 Word = Stem INFL
 <Stem pos> = <INFL from_pos>
 <Word pos> = <INFL pos>

 Stem_1 = PREFIX Stem_2
 <PREFIX from_pos> = <Stem_2 pos>
 <Stem_1 pos> = <PREFIX pos>

 Stem_1 = Stem_2 SUFFIX
 <Stem_2 pos> = <SUFFIX from_pos>
 <Stem_1 pos> = <SUFFIX pos>

 Stem = ROOT
 <Stem pos> = <ROOT pos>

The rules and constraints in figure 3.15 demonstrate the basic strategy used in Englex to accomplish two
important tasks:

1. To constrain the input and output categories of affixes; for example, to ensure that the suffix +ment
attaches to a verb and produces a noun.

2. To determine the part-of-speech of a word; for example, that a complex word such as enlargement is a
noun.

Chapter 3: Englex Page: 17 of 1679847270 Monday, November 27, 1995

The grammar uses two features for these purposes: pos and from_pos. Stems and roots have a pos feature
standing for part-of-speech, such as N (noun), V (verb), AJ (adjective) and so on. Affixes have a from_pos
feature and a pos feature. The from_pos feature is the part-of-speech of the stem to which the affix can be
attached; the pos feature is the part-of-speech of the resulting derived stem. For example, here are the feature
structures for the the root large, the prefix en+, and the suffix +ment:

 [cat: ROOT
 pos: AJ
 lex: `large
 gloss: `large]

 [cat: PREFIX
 from_pos: AJ
 pos: V
 lex: en+
 gloss: VR1]

 [cat: SUFFIX
 from_pos: V
 pos: N
 lex: +ment
 gloss: NR25]

In figure 3.15 the feature constraint <PREFIX from_pos> = <Stem_1 pos> under the fifth rule says that the
from_pos of the PREFIX must unify with the pos of the stem to which it is attached. Thus the prefix en+,
whose from_pos is AJ, can attach to the root large, whose pos is also AJ, but not with with other categories of
roots such as nouns or verbs. In this way, the grammar constrains prefixes such as en+ to occur only on
verbs.

The second feature constraint under the fifth rule in figure 3.15 <Stem pos> = <PREFIX pos>, says that the
pos of the Stem must unify with the pos of the PREFIX. Now the pos of the prefix en+ is V, but prior to the
application of this rule, the Stem category has no pos feature. Thus the effect of the constraint is to add [pos:
V] to the feature structure for the Stem category; in other words, the part-of-speech of the derived stem enlarge
is V (verb).

These two constraints demonstrate the two main uses of feature constraints. The first constraint refers to
categories which are both on the right side of the rule (PREFIX and Stem_1); its effect is to either permit or
block the application of the rule. The second constraint, however, refers to the category on the left side of the
rule (Stem) and a category on the right side (PREFIX); its effect is to pass a feature value from a lower node in
the tree (PREFIX) to a higher node (Stem). The distinction between these two types of constraints is subtle but
extremely important.

Figure 3.16 shows how the grammar from figure 3.15 analyzes the word enlargement into a parse tree and the
feature structures for each node of the tree.

Figure 3.16 Parse tree and full feature display for enlargement

 en+`large+ment VR1+`large+NR25

 1:
 Word_1
 |
 Stem_2
 ______|______
 Stem_3 SUFFIX_7
 ____|____ +ment
 PREFIX_4 Stem_5 +NR25
 en+ |
 VR1+ ROOT_6
 `large

Chapter 3: Englex Page: 18 of 1679847270 Monday, November 27, 1995

 `large

 Word_1:
 [cat: Word
 number:SG
 pos: N]

 Stem_2:
 [cat: Stem
 number:SG
 pos: N]

 Stem_3:
 [cat: Stem
 pos: V]

 PREFIX_4:
 [cat: PREFIX
 from_pos:AJ
 gloss: VR1+
 pos: V
 lex: en+]

 Stem_5:
 [cat: Stem
 pos: AJ]

 ROOT_6:
 [cat: ROOT
 gloss: `large
 pos: AJ
 lex: `large]

 SUFFIX_7:
 [cat: SUFFIX
 from_pos:V
 gloss: +NR25
 number:SG
 pos: N
 lex: +ment]

3.6.4 Interface between the lexicon and the word grammar

Now that we have developed a minimal set of grammar rules with feature constraints (figure3.15), we can look
at the interface between the lexicon and the word grammar. For example, here is the lexical entry for mice:

 \lf `mice
 \lx N
 \alt Clitic
 \fea pl irreg
 \gl `mouse

The word grammar represents this lexical item as a feature structure:

 [cat: N
 lex: `mice
 gloss: `mouse
 number: PL
 reg: -]

In this structure, the features cat, lex, and gloss are reserved features automatically constructed by the word

Chapter 3: Englex Page: 19 of 1679847270 Monday, November 27, 1995

grammar:

The value of the cat feature is taken from the sublexicon field (\lx).

The value of the lex feature is taken from the lexical form field (\lf).

The value of the gloss feature is taken from the gloss field (\gl).

The features number and reg, however, are user-defined features taken from the abbreviations pl and irreg in
the features field (\fea). They indicate that mice has plural number and is marked as an irregular form. The
abbreviations are defined by feature templates in the word grammar file (see also section 4.7.3):

 Let pl be <number> = PL
 Let irreg be <reg> = -

This kind of feature template is called a feature definition. As another example, here is the lexical entry for the
regular plural suffix +s:

 \lf +s
 \lx INFL
 \alt Clitic
 \fea n/n pl reg
 \gl +PL

The abbreviations in the features field are defined by these templates:

 Let n/n be <from_pos> = N
 <pos> = N
 Let pl be <number> = PL
 Let reg be <reg> = +

The abbreviation n/n expands into two features: [from_pos: N] and [pos: N]. This is the same mechanism as
described above for controlling the input and output categories of affixes. Note the scheme used by the
abbreviations: prefix abbreviations have the form pos\from_pos while suffix abbreviations have the form
from_pos/pos. Every affix entry in Englex must have a feature abbreviation of this type in order to satisfy the
feature contraints shown in figure 3.15. The plural suffix +s, then, is represented in the word grammar as this
feature structure:

 [cat: INFL
 lex: +s
 gloss: +PL
 from_pos: N
 pos: N
 number: PL
 reg: +]

The lexical entry above for mice explicitly contains the information that it is plural. But how do we indicate
that nouns such as mouse or fox are singular? We could of course include the feature abbreviation sg in their
entries which is defined by this template:

 Let sg be <number> = SG

However, this would require us to include the abbreviation sg in the entries for all singular nouns in the
lexicon. To capture the simple generalization that noun stems are singular by default, we instead place this
template in the word grammar file:

Chapter 3: Englex Page: 20 of 1679847270 Monday, November 27, 1995

 Let N be <number> = SG

In this kind of template, the symbol being defined must be a sublexicon name. Thus this template will add the
feature structure [number: SG] to all lexical items belonging to the N sublexicon. Similarly, to capture the fact
that by default nouns form regular plurals (for instance, fox), we add another feature specification to the N
template:

 Let N be <number> = SG
 <reg> = +

Thus the lexical entry for fox:

 \lf `fox
 \lx N
 \alt Suffix
 \gl

is given this feature structure:

 [cat: N
 lex: `fox
 gloss: `fox
 number: SG
 reg: +]

However, this analysis has a problem. The N template will be applied to all lexical items in the N sublexicon,
including items such as mice. However, the entry for mice explicitly specifies values for the features number
and reg that conflict with the values specified by the N template. What we really want the N template to say is
this: noun stems are singular and regular by default unless they are explicitly marked as plural or irregular.
This is accomplished by placing an exclamation sign before the feature values in the template:

 Let N be <number> = !SG
 <reg> = !+

Now the template will assign the values SG and + only if the lexical item does not already have values for the
number and reg features; thus the word mice will retain its own values for these features. Some nouns have
identical singular and plural forms, such as sheep and deer. Englex uses the feature abbreviation sg-pl to mark
such nouns. Here is the lexical entry for deer:

 \lf `deer
 \lx N
 \alt Suffix
 \fea sg-pl irreg
 \gl

The abbreviation sg-pl is defined in the word grammar by this template:

 Let sg-pl be <number> = {SG PL}

This template has a disjunctive definition--the number feature can have either the value SG or the value PL.
The effect of this template is that when the grammar uses the word deer, it creates two instances of it, one with
the feature specification [number: SG] and another with the feature specification [number: PL]. Template
have another important use: they are used to map sublexicon names to categories. In the default case,
sublexicon names constitute the terminal categories used in the word grammar rules. As was shown above, the
value of the cat feature of a lexical item is its sublexicon name; thus mice belongs to the category N. The
category N can then be used as a terminal category in the grammar rules. For instance, you could write a

Chapter 3: Englex Page: 21 of 1679847270 Monday, November 27, 1995

grammar with rules such as these:

 Word = Stem
 Stem = N
 Stem = V
 Stem = AJ

which say that a Word is composed of a Stem which in turn is composed of one of the terminal categories N,
V, or AJ. Notice, however, that the grammar in figure 3.15 above collapses these three rules into one:

 Stem = ROOT

N, V, and AJ are declared as instances of the ROOT category with these templates:

 Let N be <cat> = ROOT
 Let V be <cat> = ROOT
 Let AJ be <cat> = ROOT

Now the cat feature of a noun such as fox will be ROOT, not N. To encode the part-of-speech of N entries,
Englex uses the pos feature. Thus the full templates for N and V look like this:

 Let N be <cat> = ROOT
 <pos> = N
 <number> = !SG
 <reg> = !+
 Let V be <cat> = ROOT
 <pos> = V
 <reg> = !+
 <finite> = !-
 <vform> = !BASE

Category templates provide a good solution to the problem of handling roots that belong to more than one
part-of-speech. First, such roots are placed in special sublexicons in the lexicon. For example, the N-V
sublexicon contains roots that can be either a noun or a verb, such as hope and spy. Then, the word grammar
this template for N-V:

 Let N-V be {[N] [V]}

This template says that N-V is expanded into instances of both the N and V categories. Thus when a root from
the N-V sublexicon such as spy is used by the word grammar, two instances of it are created--one with the
features specified by the N template above and another with the features specified by the V template.

Figure 3.17 List of features and possible values

cat ROOT, PARTICLE, PREFIX, SUFFIX, CLITIC, COMPOUND
lex
gloss

from_pos N, V, AJ, AV
base_pos N, V, AJ
root_pos N, V, AJ, AV, AUX
drvstem +, -
changepos +, -
clitic +, -
participle +, -
stress_shift +, -
boundstem +, -
root

Chapter 3: Englex Page: 22 of 1679847270 Monday, November 27, 1995

prefix_cooccur: rev1 +, -
 deg2 +, -
suffix_cooccur: ajr8 +, -
 ajr13 +, -
 ...

head:

 pos N, V, AJ, AV, AUX, PP, PR, CJ, DT, IJ, INF
 person 1, 2, 3
 number SG, PL
 agr: 3sg +, -
 proper +, -
 tense PRES, PAST
 vform S, ED, EN, ING
 finite +, -
 aform ABS, COMP, SUPER
 verbal +, -
 case NOM, ACC, GEN, IND
 reflex +, -
 wh +, -
 reg +, -
 modal +, -
 neg +, -
 clitic: cform

